Research Article
BibTex RIS Cite

İHA Bataryasının Şarj Pedi ile Dengeli Şarj Edilmesi ve Gerçek Zamanlı İzleme Sistemi

Year 2021, , 398 - 407, 30.06.2021
https://doi.org/10.35193/bseufbd.931613

Abstract

Elektronik sistemlerin ayrılmaz bir parçası olan bataryalar, güç kaynağı olarak önemli roller oynamaktadırlar. Günümüzde mobil araçlar, elektronik cihazlar ve yedek güç gibi birçok alanda şarj edilebilir bataryalar kullanılmaktadır. Bataryaların şarj veya deşarj işlemi sırasında takip edilmesi, performans açısından bataryanın ömrünün korunmasını ve güvenliğini sağlamaktadır. Batarya Yönetim Sistemleri (BMS: Battery Management Systems), bataryanın sahip olduğu hücreleri, balanslı bir şekilde şarj veya deşarj ederek hücrelerdeki dengenin korunmasını sağlamaktadır. Bu sistemler, bataryaların ömrünü uzatabilme ve optimize edebilme imkânı sağlar. Bu çalışma kapsamında, İnsansız Hava Araçlarında (İHA) kullanılan Lityum Polimer (LiPo) bataryalarının şarj işlemi sırasında takip edilmesine imkân sağlayacak bir sistem gerçekleştirilmiştir. Geliştirilen sistem ile LiPo bataryasının hücre gerilim değerleri, hazırlanan bir arayüz ile gerçek zamanlı olarak takip edilebilmektedir.

Supporting Institution

Bilecik Şeyh Edebali Üniversitesi

Project Number

2017-02.BŞEÜ.03-05

Thanks

Yazarlar, 2017-02.BŞEÜ.03-05 no’lu proje kapsamında, Bilecik Şeyh Edebali Üniversitesi'nin verdiği destek için teşekkür eder.

References

  • Sierra, G., Orchard, M., Goebelb, K. & Kulkarnid C. (2019). Battery health management for small-size rotary-wing electric unmanned aerial vehicles: An efficient approach for constrained computing platforms. Reliability Engineering and System Safety, 182, 166–178.
  • Legowo, A., Sulaeman, E. & Rosli, D. (2019). Review on System Identification for Quadrotor Unmanned Aerial Vehicle (UAV). Advances in Science and Engineering Technology International Conferences (ASET). Dubai, United Arab Emirates, 8.
  • Hayat, S., Yanmaz, E. & Muzaffar, R. (2016). Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint. IEEE Communications Surveys & Tutorials, 18, 2624-2661.
  • Bronz, M., Moschetta, J.M., Brisset, P. & Gorraz, M. (2009). Towards a Long Endurance MAV. International Journal of Micro Air Vehicles, 1, 241-254.
  • Hassanalian, M. & Abdelkefi, A. (2017.) Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99-131.
  • Yang, X., Jiang, H. & Deng, Z. (2015). Design of a Battery Management System Based on Matrix Switching Network. IEEE International Conference on Information and Automation, Lijiang, China, 141.
  • Cao, J. & Emadi, A. (2011). Batteries need electronics. IEEE Industrial Electronics Magazine, 5(1), 7-35.
  • Gatti, M., Giulietti, F. & Turci, M. (2015). Maximum endurance for battery-powered rotary-wing aircraft. Aerospace Science and Technology, 45, 174–9.
  • Pola, D.A., Navarrete, H.F., Orchard, M.E., Rabie, R.S., Cerda, M.A., Olivares, B.E., Silva, J.F., Espinoza, P.A. & Perez, A. (2015). Particle-filtering-based discharge time prognosis for lithium-ion batteries with a statistical characterization of use profiles. IEEE Transactions on Reliability, 64(2), 710–20.
  • Baronti, F., Fantechi, G., Leonardi, E., Roncella R. & Saletti, R. (2011). Hierarchical platform for monitoring, managing and charge balancing of LiPo batteries. IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6.
  • Carkhuff, B.G., Demirev, P.A. & Srinivasa, R. (2018). Impedance-Based Battery Management System for Safety Monitoring of Lithium-Ion Batteries. IEEE Transactions on Industrial Electronics, 65(8), 6497-6504.
  • Marhoon, H.M. & Taha I.A. (2018). Design and Implementation of Intelligent Circuit Breaker for Electrical Current Sensing and Monitoring. International Journal of Core Engineering & Management, 4(11), 39-49.
  • Kondaveeti, H.K., Kumaravelu, N.K., Vanambathina, S.D., Mathe, S.E. & Vappangi, S. (2021). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, 100364.
  • Merev, A. & Kalenderli, O. (2006). 100 ppm'den Küçük Ölçüm Belirsizliğine Sahip 100 kV Yüksek Doğru Gerilim Bölücüsü. İTÜ Dergisi/D - Mühendislik, 5(3), 39-50.

Balanced Charging of UAV Battery with Charging Pad and Real Time Monitoring System

Year 2021, , 398 - 407, 30.06.2021
https://doi.org/10.35193/bseufbd.931613

Abstract

Batteries, which are an essential part of electronic systems, play an important role as a power source. Today, rechargeable batteries are used in many areas, such as mobile vehicles, electronic devices, and backup power. Monitoring the batteries during the charging or discharging process ensures the protection and safety of the battery life in terms of performance. Battery Management Systems (BMS) ensure that the balance in the cells is maintained by charging or discharging the cells of the battery in a balanced way. These systems provide the ability to extend the life and optimize of the batteries. In this study, a system has been developed that will allow the monitoring of Lithium Polymer (LiPo) batteries used in Unmanned Aerial Vehicles (UAV) during the charging process. With the developed system, the voltage values of the LiPo battery cells are monitored in real time with an interface.

Project Number

2017-02.BŞEÜ.03-05

References

  • Sierra, G., Orchard, M., Goebelb, K. & Kulkarnid C. (2019). Battery health management for small-size rotary-wing electric unmanned aerial vehicles: An efficient approach for constrained computing platforms. Reliability Engineering and System Safety, 182, 166–178.
  • Legowo, A., Sulaeman, E. & Rosli, D. (2019). Review on System Identification for Quadrotor Unmanned Aerial Vehicle (UAV). Advances in Science and Engineering Technology International Conferences (ASET). Dubai, United Arab Emirates, 8.
  • Hayat, S., Yanmaz, E. & Muzaffar, R. (2016). Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint. IEEE Communications Surveys & Tutorials, 18, 2624-2661.
  • Bronz, M., Moschetta, J.M., Brisset, P. & Gorraz, M. (2009). Towards a Long Endurance MAV. International Journal of Micro Air Vehicles, 1, 241-254.
  • Hassanalian, M. & Abdelkefi, A. (2017.) Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99-131.
  • Yang, X., Jiang, H. & Deng, Z. (2015). Design of a Battery Management System Based on Matrix Switching Network. IEEE International Conference on Information and Automation, Lijiang, China, 141.
  • Cao, J. & Emadi, A. (2011). Batteries need electronics. IEEE Industrial Electronics Magazine, 5(1), 7-35.
  • Gatti, M., Giulietti, F. & Turci, M. (2015). Maximum endurance for battery-powered rotary-wing aircraft. Aerospace Science and Technology, 45, 174–9.
  • Pola, D.A., Navarrete, H.F., Orchard, M.E., Rabie, R.S., Cerda, M.A., Olivares, B.E., Silva, J.F., Espinoza, P.A. & Perez, A. (2015). Particle-filtering-based discharge time prognosis for lithium-ion batteries with a statistical characterization of use profiles. IEEE Transactions on Reliability, 64(2), 710–20.
  • Baronti, F., Fantechi, G., Leonardi, E., Roncella R. & Saletti, R. (2011). Hierarchical platform for monitoring, managing and charge balancing of LiPo batteries. IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6.
  • Carkhuff, B.G., Demirev, P.A. & Srinivasa, R. (2018). Impedance-Based Battery Management System for Safety Monitoring of Lithium-Ion Batteries. IEEE Transactions on Industrial Electronics, 65(8), 6497-6504.
  • Marhoon, H.M. & Taha I.A. (2018). Design and Implementation of Intelligent Circuit Breaker for Electrical Current Sensing and Monitoring. International Journal of Core Engineering & Management, 4(11), 39-49.
  • Kondaveeti, H.K., Kumaravelu, N.K., Vanambathina, S.D., Mathe, S.E. & Vappangi, S. (2021). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, 100364.
  • Merev, A. & Kalenderli, O. (2006). 100 ppm'den Küçük Ölçüm Belirsizliğine Sahip 100 kV Yüksek Doğru Gerilim Bölücüsü. İTÜ Dergisi/D - Mühendislik, 5(3), 39-50.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hakan Üçgün 0000-0002-9448-0679

Uğur Yüzgeç 0000-0002-5364-6265

Cüneyt Bayılmış 0000-0003-1058-7100

Project Number 2017-02.BŞEÜ.03-05
Publication Date June 30, 2021
Submission Date May 2, 2021
Acceptance Date June 10, 2021
Published in Issue Year 2021

Cite

APA Üçgün, H., Yüzgeç, U., & Bayılmış, C. (2021). İHA Bataryasının Şarj Pedi ile Dengeli Şarj Edilmesi ve Gerçek Zamanlı İzleme Sistemi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(1), 398-407. https://doi.org/10.35193/bseufbd.931613