Research Article
BibTex RIS Cite

2-(karbazol-3’-il)-5-formilpiridin: Floresans Biyotiyol Sensör Özelliğinin İncelenmesi

Year 2021, , 901 - 912, 31.12.2021
https://doi.org/10.35193/bseufbd.976953

Abstract

Bu çalışmada 2-(karbazol-3’-il)-5-formilpiridin molekülü floresans prob olarak biyotiyol (sistein, homosistein ve glutatyon) moleküllerinin tayin ve tespitinde kullanıldı. Probun bu biyotiyollere karşı duyarlılık ve seçiciliği UV-vis ve PL spektrometreleri ile incelendi. Prob, 1:9 DMSO:HEPES Tampon çözeltisi (0.1 M, pH:7.4) içerisinde biyotiyoller arasından sisteine karşı 60 eşdeğerde emisyon artışı ile seçicilik gösterdi. Ayrıca prob ile biyotiyoller arasında oluşan yeni yapı 1H NMR ve MS spektrometreleri ile de takip edilerek teyit edildi.

Supporting Institution

TÜBİTAK

Project Number

1059B191800354

Thanks

A.B. ve N.A. değerli katkı, teşvik ve yardımlarından dolayı Uludağ Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü’nden Prof. Dr. Mustafa Tavaslı’ya çok teşekkür eder. A.B., 2219 kodlu Yurtdışı Doktora Sonrası Araştırma Burs (Burs Numarası:1059B191800354) kapsamında destek veren TÜBİTAK’a teşekkür eder. Ayrıca A.B. laboratuvar imkanlarını sonuna kadar kullanıma açıp yardımcı olan Glasgow Üniversitesi’nden Prof. Dr. Peter Skabara’ya ve Duetta Spektrometresiyle ölçüm imkânı tanıyan Dr. William Peveler’e minnettardır. Yine A.B., tüm değerli fikir ve yardımları için Glasgow Üniversitesi’nden Dr. Oleksandr’a, Dr. Holly A. Yu’a ve Hao Yang’a teşekkür eder.

References

  • Ding, S., Liu, M., & Hong, Y. (2018). Biothiol-specific fluorescent probes with aggregation-induced emission characteristics. Science China Chemistry, 61(8), 882-891.
  • Peng, H., Chen, W., Cheng, Y., Hakuna, L., Strongin, R., & Wang, B. (2012). Thiol Reactive Probes and Chemosensors. Sensors, 12(11), 15907-15946.
  • Huo, F., Kang, J., Yin, C., Zhang, Y., & Chao, J. (2015). A turn-on green fluorescent thiol probe based on the 1,2-addition reaction and its application for bioimaging. Sensors and Actuators B: Chemical, 207, 139-143.
  • Lin, W., Yuan, L., Cao, Z., Feng, Y., & Long, L. (2009). A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α,β-Unsaturated Ketones. Chemistry – A European Journal, 15(20), 5096-5103.
  • Ang, C. Y., Tan, S. Y., Lu, Y., Bai, L., Li, M., Li, P., . . .& Zhao, Y. (2014). “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules. Scientific Reports, 4(1), 7057.
  • Liu, Y., Li, M., Wong, K. M.-C., Tong, Y., Yang, H., & Kong, J. (2019). A New Quinone Based Fluorescent Probe for High Sensitive and Selective Detection of Biothiols and Its Application in Living Cell Imaging. International Journal of Analytical Chemistry, 7536431.
  • Zhao, H., Chen, M., & Ma, C. (2019). Fluorescent Method for the Detection of Biothiols Using an Ag+-Mediated Conformational Switch. Sensors, 19(4), 934.
  • Wang, L., Zhuo, S., Tang, H., & Cao, D. (2018). An efficient fluorescent probe for rapid sensing of different concentration ranges of cysteine with two-stage ratiometric signals. Dyes and Pigments, 157, 284-289.
  • Miao, Q., Li, Q., Yuan, Q., Li, L., Hai, Z., Liu, S., & Liang, G. (2015). Discriminative Fluorescence Sensing of Biothiols in Vitro and in Living Cells. Analytical Chemistry, 87(6), 3460-3466.
  • Chen, C., Zhou, L., Huang, X., & Liu, W. (2017). Rapid detection of intracellular Cys over Hcy and GSH using a novel two-photon coumarinocoumarin-based colorimetric and fluorescent probe. Journal of Materials Chemistry B, 5(29), 5892-5897.
  • Niu, L. Y., Guan, Y. S., Chen, Y.-Z., Wu, L. Z., Tung, C. H., & Yang, Q. Z. (2012). BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine. Journal of the American Chemical Society, 134(46), 18928-18931.
  • Guo, F., Tian, M., Miao, F., Zhang, W., Song, G., Liu, Y., . . . & Wong, W. Y. (2013). Lighting up cysteine and homocysteine in sequence based on the kinetic difference of the cyclization/addition reaction. Organic & Biomolecular Chemistry, 11(44), 7721-7728.
  • Kaur, M., Yoon, B., Kumar, R., Cho, M. J., Kim, H. J., Kim, J. S., & Choi, D. H. (2014). A Carbazole Based Bimodal "Turn-On" Fluorescent Probe for Biothiols (Cysteine/Homocysteine) and Fluoride: Sensing, Imaging and its Applications. Bulletin of the Korean Chemical Society, 35(12), 3437-3442.
  • Gong, P., Sun, J., Xue, P., Qian, C., Zhang, Z., Sun, J., & Lu, R. (2015). Luminescent nanofibers fabricated from triphenylvinyl substituted carbazole derivatives via organogelation for sensing gaseous nitroaromatics. Dyes and Pigments, 118, 27-36.
  • Pang, L., Zhou, Y., Wang, E., Yu, F., Zhou, H., & Gao, W. (2016). A “turn-on” fluorescent probe used for the specific recognition of intracellular GSH and its application in bioimaging. RSC Advances, 6(20), 16467-16473.
  • Chen, P. Z., Zhang, H., Niu, L. Y., Zhang, Y., Chen, Y. Z., Fu, H. B., & Yang, Q. Z. (2017). A Solid-State Fluorescent Material Based on Carbazole-Containing Difluoroboron β-Diketonate: Multiple Chromisms, the Self-Assembly Behavior, and Optical Waveguides. Advanced Functional Materials, 27(25), 1700332.
  • Song, H., Zhang, J., Wang, X., Zhou, Y., Xu, C., Pang, X., & Peng, X. (2018). A novel “turn-on” fluorescent probe with a large stokes shift for homocysteine and cysteine: Performance in living cells and zebrafish. Sensors and Actuators B: Chemical, 259, 233-240.
  • Wang, X. D., Fan, L., Ge, J. Y., Li, F., Zhang, C. H., Wang, J.J., . . . & Dong, C. (2019). A lysosome-targetable fluorescent probe for real-time imaging cysteine under oxidative stress in living cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 221, 117175.
  • Altinolcek, N., Battal, A., Tavasli, M., Peveler, W. J., Yu, H. A., & Skabara, P. J. (2020). Synthesis of novel multifunctional carbazole-based molecules and their thermal, electrochemical and optical properties. Beilstein Journal of Organic Chemistry, 16, 1066-1074.
  • Altinolcek, N., & Battal, A. (2021). The Investigation of Fluorescence Biothiol Sensor Properties of 2-(N-hexyl-carbazole-3'-yl)-4- formylpyridine. Journal of the Institute of Science and Technology, 11(3), 2184-2194.
  • Kamps, J. J. A. G., Hopkinson, R. J., Schofield, C. J., & Claridge, T. D. W. (2019). How formaldehyde reacts with amino acids. Communications Chemistry, 2(1), 126.
  • Hopkinson, R. J., Barlow, P. S., Schofield, C. J., & Claridge, T. D. W. (2010). Studies on the reaction of glutathione and formaldehyde using NMR. Organic & Biomolecular Chemistry, 8(21), 4915-4920.

2-(carbazole-3'-yl)-5-formylpyridine: Investigation of the Fluorescence Biothiol Sensor Property

Year 2021, , 901 - 912, 31.12.2021
https://doi.org/10.35193/bseufbd.976953

Abstract

In this study, 2-(carbazole-3'-yl)-5-formylpyridine molecule was used as a fluorescence probe for the determination and detection of biothiol (cysteine, homocysteine and glutathione) molecules. The sensitivity and selectivity of the probe to these biothiols were examined with UV-vis and PL spectrometers. The probe showed selectivity among biothiols in 1:9 DMSO:HEPES solution (0.1 M, pH:7.4) with an emission increase of 60 equivalents against cysteine. In addition, the new structure formed between the probe and the biothiols was confirmed by monitoring with 1H NMR and MS spectrometers.

Project Number

1059B191800354

References

  • Ding, S., Liu, M., & Hong, Y. (2018). Biothiol-specific fluorescent probes with aggregation-induced emission characteristics. Science China Chemistry, 61(8), 882-891.
  • Peng, H., Chen, W., Cheng, Y., Hakuna, L., Strongin, R., & Wang, B. (2012). Thiol Reactive Probes and Chemosensors. Sensors, 12(11), 15907-15946.
  • Huo, F., Kang, J., Yin, C., Zhang, Y., & Chao, J. (2015). A turn-on green fluorescent thiol probe based on the 1,2-addition reaction and its application for bioimaging. Sensors and Actuators B: Chemical, 207, 139-143.
  • Lin, W., Yuan, L., Cao, Z., Feng, Y., & Long, L. (2009). A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α,β-Unsaturated Ketones. Chemistry – A European Journal, 15(20), 5096-5103.
  • Ang, C. Y., Tan, S. Y., Lu, Y., Bai, L., Li, M., Li, P., . . .& Zhao, Y. (2014). “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules. Scientific Reports, 4(1), 7057.
  • Liu, Y., Li, M., Wong, K. M.-C., Tong, Y., Yang, H., & Kong, J. (2019). A New Quinone Based Fluorescent Probe for High Sensitive and Selective Detection of Biothiols and Its Application in Living Cell Imaging. International Journal of Analytical Chemistry, 7536431.
  • Zhao, H., Chen, M., & Ma, C. (2019). Fluorescent Method for the Detection of Biothiols Using an Ag+-Mediated Conformational Switch. Sensors, 19(4), 934.
  • Wang, L., Zhuo, S., Tang, H., & Cao, D. (2018). An efficient fluorescent probe for rapid sensing of different concentration ranges of cysteine with two-stage ratiometric signals. Dyes and Pigments, 157, 284-289.
  • Miao, Q., Li, Q., Yuan, Q., Li, L., Hai, Z., Liu, S., & Liang, G. (2015). Discriminative Fluorescence Sensing of Biothiols in Vitro and in Living Cells. Analytical Chemistry, 87(6), 3460-3466.
  • Chen, C., Zhou, L., Huang, X., & Liu, W. (2017). Rapid detection of intracellular Cys over Hcy and GSH using a novel two-photon coumarinocoumarin-based colorimetric and fluorescent probe. Journal of Materials Chemistry B, 5(29), 5892-5897.
  • Niu, L. Y., Guan, Y. S., Chen, Y.-Z., Wu, L. Z., Tung, C. H., & Yang, Q. Z. (2012). BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine. Journal of the American Chemical Society, 134(46), 18928-18931.
  • Guo, F., Tian, M., Miao, F., Zhang, W., Song, G., Liu, Y., . . . & Wong, W. Y. (2013). Lighting up cysteine and homocysteine in sequence based on the kinetic difference of the cyclization/addition reaction. Organic & Biomolecular Chemistry, 11(44), 7721-7728.
  • Kaur, M., Yoon, B., Kumar, R., Cho, M. J., Kim, H. J., Kim, J. S., & Choi, D. H. (2014). A Carbazole Based Bimodal "Turn-On" Fluorescent Probe for Biothiols (Cysteine/Homocysteine) and Fluoride: Sensing, Imaging and its Applications. Bulletin of the Korean Chemical Society, 35(12), 3437-3442.
  • Gong, P., Sun, J., Xue, P., Qian, C., Zhang, Z., Sun, J., & Lu, R. (2015). Luminescent nanofibers fabricated from triphenylvinyl substituted carbazole derivatives via organogelation for sensing gaseous nitroaromatics. Dyes and Pigments, 118, 27-36.
  • Pang, L., Zhou, Y., Wang, E., Yu, F., Zhou, H., & Gao, W. (2016). A “turn-on” fluorescent probe used for the specific recognition of intracellular GSH and its application in bioimaging. RSC Advances, 6(20), 16467-16473.
  • Chen, P. Z., Zhang, H., Niu, L. Y., Zhang, Y., Chen, Y. Z., Fu, H. B., & Yang, Q. Z. (2017). A Solid-State Fluorescent Material Based on Carbazole-Containing Difluoroboron β-Diketonate: Multiple Chromisms, the Self-Assembly Behavior, and Optical Waveguides. Advanced Functional Materials, 27(25), 1700332.
  • Song, H., Zhang, J., Wang, X., Zhou, Y., Xu, C., Pang, X., & Peng, X. (2018). A novel “turn-on” fluorescent probe with a large stokes shift for homocysteine and cysteine: Performance in living cells and zebrafish. Sensors and Actuators B: Chemical, 259, 233-240.
  • Wang, X. D., Fan, L., Ge, J. Y., Li, F., Zhang, C. H., Wang, J.J., . . . & Dong, C. (2019). A lysosome-targetable fluorescent probe for real-time imaging cysteine under oxidative stress in living cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 221, 117175.
  • Altinolcek, N., Battal, A., Tavasli, M., Peveler, W. J., Yu, H. A., & Skabara, P. J. (2020). Synthesis of novel multifunctional carbazole-based molecules and their thermal, electrochemical and optical properties. Beilstein Journal of Organic Chemistry, 16, 1066-1074.
  • Altinolcek, N., & Battal, A. (2021). The Investigation of Fluorescence Biothiol Sensor Properties of 2-(N-hexyl-carbazole-3'-yl)-4- formylpyridine. Journal of the Institute of Science and Technology, 11(3), 2184-2194.
  • Kamps, J. J. A. G., Hopkinson, R. J., Schofield, C. J., & Claridge, T. D. W. (2019). How formaldehyde reacts with amino acids. Communications Chemistry, 2(1), 126.
  • Hopkinson, R. J., Barlow, P. S., Schofield, C. J., & Claridge, T. D. W. (2010). Studies on the reaction of glutathione and formaldehyde using NMR. Organic & Biomolecular Chemistry, 8(21), 4915-4920.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ahmet Battal 0000-0003-0208-1564

Nuray Altınölçek 0000-0002-9553-1474

Project Number 1059B191800354
Publication Date December 31, 2021
Submission Date July 31, 2021
Acceptance Date August 27, 2021
Published in Issue Year 2021

Cite

APA Battal, A., & Altınölçek, N. (2021). 2-(karbazol-3’-il)-5-formilpiridin: Floresans Biyotiyol Sensör Özelliğinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 901-912. https://doi.org/10.35193/bseufbd.976953