Review
BibTex RIS Cite

Catalytic Membrane Aided Pervaporation Applications in Esterification Reactions

Year 2020, Volume: 7 Issue: 2, 1152 - 1169, 30.12.2020
https://doi.org/10.35193/bseufbd.611971

Abstract

The development of the chemical industry has resulted in the usage more solvents in various chemical and physical processes. The increase in the amount of used solvent also increases the economic burden to the industry. The recovery, reuse, and purification of solvents became the essential requirements of the industry. In addition, the obtainment of high-quality, economic product with low environmental impact and high yield is important. The catalytic membrane aided pervaporation application is considered as one of the new alternative solutions of both reaction and separation problems in the industries. Catalytic membrane aided pervaporation application is one of the developing membrane technologies. It is a hybrid and integrated process combining separation and reaction units. This article is concentrated on catalytic membrane aided pervaporation applications of the esterification reactions. Some important information about catalytic membrane, pervaporation and catalytic membrane aided pervaporation has been firstly reported. Different configurations of catalytic membrane aided pervaporation have been defined and explained. Advantages of the hybrid catalytic membrane aided pervaporation processes have been listed. The factors affecting the catalytic membrane aided pervaporation are briefly discussed. The important catalytic membrane aided pervaporation, reaction conditions and the obtained results in literature are also summarized. The important catalytic membrane aided pervaporation studies in literature, operation conditions and the obtained results have been summarized.

References

  • Rathod, A. P., Wasewar, K. L., & Sonawane, S. S. (2013). Enhancement of esterification reaction by pervaporation reactor: an intensifying approach. Procedia Engineering, 51, 330–334.
  • Yanti, H., Wikandari, R., Millati, R., Niklasson, C., & Taherzadeh, M. J. (2014). Effect of ester compounds on biogas production: beneficial or detrimental?. Energy Science & Engineering, 2(1), 22–30.
  • Yuan, H.-K., Ren, J., Ma, X.-H., & Xu, Z.-L. (2011). Dehydration of ethyl acetate aqueous solution by pervaporation using PVA/PAN hollow fiber composite membrane. Desalination, 280(1-3), 252–258.
  • Zhang, X. H., Liu, Q. L., Xiong, Y., Zhu, A. M., Chen, Y., & Zhang, Q. G. (2009). Pervaporation dehydration of ethyl acetate/ethanol/water azeotrope using chitosan/poly (vinyl pyrrolidone) blend membranes. Journal of Membrane Science, 327(1-2), 274–280.
  • Brown, W., Foote, C., Iverson, B., & Anslyn, E. (2011). Organic Chemistry, 5th Edition, Brooks/Cole Cengage Learning, USA.
  • Wasewar, K., Patidar, S., & Agarwal, V. K. (2009). Esterification of lactic acid with ethanol in a pervaporation reactor: modeling and performance study. Desalination, 243(1-3), 305–313.
  • Das, S., Banthia, A.K., & Adhikari B. (2007). Improved conversion to ethyl acetate through removal of water of esterification by membrane pervaporation. Indian Journal of Chemical Technology, 14, 552–559.
  • Cannilla, C., Bonura, G., & Frusteri, F. (2017). Potential of Pervaporation and Vapor Separation with Water Selective Membranes for an Optimized Production of Biofuels—A Review. Catalysts, 7, 187.
  • Marszałek, J., Rdzanek, P., & Kamiński, W. (2014). Improving performance of pervaporation membranes for biobutanol separation. Desalination and Water Treatment, 56(13), 3535–3543.
  • Wang, Q.W., Shi, B.L., & Ji, L.Y., (2014). Pervaporation separation of ethanol via adsorbent-filled silicon rubber membranes. Membrane Water Treatment International Journal, 5, 265-279.
  • Chapman, P. D., Oliveira, T., Livingston, A. G., & Li, K. (2008). Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science, 318(1-2), 5–37.
  • Shi, G. M., Zuo, J., Tang, S. H., Wei, S., & Chung, T. S. (2015). Layer-by-layer (LbL) polyelectrolyte membrane with Nexar™ polymer as a polyanion for pervaporation dehydration of ethanol. Separation and Purification Technology, 140, 13–22.
  • Meireles, I. T., Portugal, C., Alves, V. D., Crespo, J. G., & Coelhoso, I. M. (2015). Impact of biopolymer purification on the structural characteristics and transport performance of composite polysaccharide membranes for pervaporation. Journal of Membrane Science, 493, 179–187.
  • Toti, U. S., & Aminabhavi, T. M. (2004). Synthesis and characterization of polyacrylamidegrafted sodium alginate membranes for pervaporation separation of water + isopropanol mixtures. Journal of Applied Polymer Science, 92(3), 2030–2037.
  • Toti, U. S., & Aminabhavi, T. M. (2004). Different viscosity grade sodium alginate and modified sodium alginate membranes in pervaporation separation of water + acetic acid and water + isopropanol mixtures. Journal of Membrane Science, 228(2), 199–208.
  • Naidu, B.K., Sairam, M., Raju, K., & Aminabhavi, T. (2005). Thermal, viscoelastic, solution and membrane properties of sodium alginate/hydroxyethylcellulose blends. Carbohydrate Polymers, 61(1), 52–60.
  • Naidu, B.V.K., Rao, K.S.V.K., & Aminabhavi, T.M. (2005). Pervaporation separation of water+1,4-dioxane and water+tetrahydrofuran mixtures using sodium alginate and its blend membranes with hydroxyethylcellulose—A comparative study. Journal of Membrane Science, 260(1-2), 131–141.
  • Ozdemir, S., Buonomenna, M., & Drioli, E. (2006). Catalytic polymeric membranes: preparation and application. Applied Catalysis A: General, 307(2), 167–183.
  • Bruggen, B.V. (2010). Pervaporation Membrane Reactors. Comprehensive Membrane Science and Engineering 1st ed. Academic Press, Oxford, 135–163.
  • Peters, T.A. (2006). Catalytic pervaporation membranes for close integration of reaction and separation, Phd Thesis, Technische Universiteit Eindhoven, Eindhoven.
  • Zhu, M.-H., Feng, Z.-J., Hua, X.-M., Hu, H., Xia, S.-L., Hu, N., Kita, H. (2016). Application of a mordenite membrane to the esterification of acetic acid and alcohol using sulfuric acid catalyst. Microporous and Mesoporous Materials, 233, 171–176.
  • Sert, E., & Atalay, F. S. (2014). n-Butyl acrylate production by esterification of acrylic acid with n-butanol combined with pervaporation. Chemical Engineering and Processing: Process Intensification, 81, 41–47.
  • Parulekar, S. J. (2007). Analysis of pervaporation-aided esterification of organic acids. Industrial & Engineering Chemistry Research, 46(25), 8490–8504.
  • Peters, T. A., Benes, N. E., & Keurentjes, J. T. F. (2005). Zeolite-coated ceramic pervaporation membranes; pervaporation−esterification coupling and reactor evaluation. Industrial & Engineering Chemistry Research, 44(25), 9490–9496.
  • Figueiredo, K. C. de S., Salim, V. M. M., & Borges, C. P. (2008). Synthesis and characterization of a catalytic membrane for pervaporation-assisted esterification reactors. Catalysis Today, 133-135, 809–814.
  • Dioos, B. M. L., Vankelecom, I. F. J., & Jacobs, P. A. (2006). Aspects of ımmobilisation of catalysts on polymeric supports. Advanced Synthesis & Catalysis, 348(12-13), 1413–1446.
  • Shaban, H. I. (1998). Hydrolysis of ethyl acetate:a pervaporation study. European Polymer Journal, 34(7), 955–973.
  • Nandiwale, K. Y., Sonar, S. K., Niphadkar, P. S., Joshi, P. N., Deshpande, S. S., Patil, V. S., & Bokade, V. V. (2013). Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Applied Catalysis A: General, 460-461, 90–98.
  • Fernandes, D. R., Rocha, A. S., Mai, E. F., Mota, C. J. A., & Teixeira da Silva, V. (2012). Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Applied Catalysis A: General, 425-426, 199–204.
  • Kuwahara, Y., Fujitani, T., & Yamashita, H. (2014). Esterification of levulinic acid with ethanol over sulfated mesoporous zirconosilicates: Influences of the preparation conditions on the structural properties and catalytic performances. Catalysis Today, 237, 18–28.
  • Omota, F., Dimian, A. ., & Bliek, A. (2003). Fatty acid esterification by reactive distillation: Part 2—kinetics-based design for sulphated zirconia catalysts. Chemical Engineering Science, 58(14), 3175–3185.
  • Zatta, L., Gardolinski, J. E. F. da C., & Wypych, F. (2011). Raw halloysite as reusable heterogeneous catalyst for esterification of lauric acid. Applied Clay Science, 51(1-2), 165–169.
  • Unlu, D., & Durmaz Hilmioglu, N. (2016). Synthesis of Ethyl Levulinate as a Fuel Bioadditive by a Novel Catalytically Active Pervaporation Membrane. Energy & Fuels, 30(4), 2997–3003.
  • Rezac, M.E. (2000). Catalytic Membrane Reactors. Encyclopedia of Separation Science 1st ed. Academic Press, Germany,1676-1682.
  • Chopade, S.P., Mahajani, S.M. (2000). Pervaporation:Membrane Separations. Encyclopedia of Separation Science, 1st ed. Academic Press, Germany, 3636-3638.
  • Zhu, Y., Xia, S., Liu, G., & Jin, W. (2010). Preparation of ceramic-supported poly(vinyl alcohol)–chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures. Journal of Membrane Science, 349(1-2), 341–348.
  • Feng, X., & Huang, R. Y. M. (1997). Liquid separation by membrane pervaporation: a review. Industrial & Engineering Chemistry Research, 36(4), 1048–1066.
  • Solak, E.K. (2005). Separation of dimethylformamide-water mixtures using sodium alginate, sodium alginate/poly(vinyl pyrrolidone) and N-vinyl-2-pyrrolidone-g-sodium alginate membranes, Phd Thesis, Gazi University, Institute of Science and Technology, Ankara.
  • Brüschke, H.E.A., Wynn, N.P. (2000). Membrane Separations/Pervaporation. Encyclopedia of Separation Science, Academic Press, Germany, 1776-1778.
  • Doğan, H. (2007). Zeolite filled polimeric membranes for pervaporation applications, Phd Thesis, Kocaeli University, Institute of Science and Technology, Kocaeli.
  • Ceia, T. F., Silva, A. G., Ribeiro, C. S., Pinto, J. V., Casimiro, M. H., Ramos, A. M., & Vital, J. (2014). PVA composite catalytic membranes for hyacinth flavour synthesis in a pervaporation membrane reactor. Catalysis Today, 236, 98–107.
  • Unlu, D., & Hilmioglu, N. D. (2016). Pervaporation catalytic membrane reactor study for the production of ethyl acetate using Zr(SO4)2.4H2O coated chitosan membrane. Journal of Chemical Technology & Biotechnology, 91(1), 122–130.
  • Xu, W., Xu, J., Gao, L., & Xiao, G. (2015). Preparation and characterization of inorganic acid catalytic membrane for biodiesel production from oleic acid. Asia-Pacific Journal of Chemical Engineering, 10(6), 851–857.
  • Assabumrungrat, S., Phongpatthanapanich, J., Praserthdam, P., Tagawa, T., & Goto, S. (2003). Theoretical study on the synthesis of methyl acetate from methanol and acetic acid in pervaporation membrane reactors: effect of continuous-flow modes. Chemical Engineering Journal, 95(1-3), 57–65.
  • Buonomenna, M. G., Choi, S. H., & Drioli, E. (2010). Catalysis in polymeric membrane reactors: the membrane role. Asia-Pacific Journal of Chemical Engineering, 5(1), 26–34.
  • Zhang, F. (2012). Development and scale-up of enhanced polymeric membrane reactor systems for organic synthesis. Ph.D. Thesis, Kansas State University, Manhattan.
  • Li, J., Chen, X., Qi, B., Luo, J., Zhuang, X., Su, Y., & Wan, Y. (2013). Continuous acetone–butanol–ethanol (abe) fermentation with in situ solvent recovery by silicalite-1 filled pdms/pan composite membrane. Energy & Fuels, 28(1), 555–562.
  • Nunes, S.P. & Peinemann, K.V. (2006). Membrane Technology in the Chemical Industry, Wiley, Germany, 354 pp.
  • Sun, H., Sun, D., Shi, X., Li, B., Yue, D., Xiao, R., Ren, P., Zhang, J. (2020). PVA/SO42−-AAO difunctional catalytic-pervaporation membranes: Preparation and characterization. Separation and Purification Technology, 241, 116739.
  • Li, M., Zhang, W., Zhou, S., & Zhao, Y. (2020). Preparation of poly (vinyl alcohol)/palygorskite-poly (ionic liquids) hybrid catalytic membranes to facilitate esterification. Separation and Purification Technology, 230, 115746.
  • Cao, Z., Xia, C., Jia, W., Qing, W., & Zhang, W. (2020). Enhancing bioethanol productivity by a yeast-immobilized catalytically active membrane in a fermentation-pervaporation coupling process. Journal of Membrane Science, 595, 117485.
  • Li, Y., Han, S., Zhang, L., Li, W., & Xing, W. (2019). Fabrication and modeling of catalytic membrane for removing water in esterification. Journal of Membrane Science, 579, 120–130.
  • Zhang, L., Li, Y., Liu, Q., Li, W., & Xing, W. (2019). Fabrication of ionic liquids-functionalized PVA catalytic composite membranes to enhance esterification by pervaporation. Journal of Membrane Science. 584, 268-281.
  • Unlu, D., & Durmaz Hilmioglu, N. (2019). Production Of Fuel Bioadditive “Triacetin” by usıng phosphomolybdic acid loaded pva membrane in pervaporatıon catalytic membrane reactor. Energy & Fuels, 33, 2208−2218.
  • Unlu, D., & Hilmioglu, N. D. (2018). Pervaporation catalytic membrane reactor application over functional chitosan membrane. Journal of Membrane Science, 559, 138–147.
  • Unlu, D., Ilgen, O., & Durmaz Hilmioglu, N. (2017). Reactive separation system for effective upgrade of levulinic acid into ethyl levulinate. Chemical Engineering Research and Design, 118, 248–258.
  • Nigiz, F. U., & Hilmioglu, N. D. (2016). Simultaneous separation performance of a catalytic membrane reactor for ethyl lactate production by using boric acid coated carboxymethyl cellulose membrane. Reaction Kinetics, Mechanisms and Catalysis, 118(2), 557–575.
  • Nigiz, F. U., & Hilmioglu, N. D. (2016). Rhizomucor miehei lipase-immobilized sodium alginate membrane preparation and usage in a pervaporation biocatalytic membrane reactor. Chemical and Biochemical Engineering Quarterly, 30, 381–391.
  • Qing, W., Wu, J., Chen, N., Liu, L., Deng, Y., & Zhang, W. (2017). A genuine in-situ water removal at a molecular lever by an enhanced esterification-pervaporation coupling in a catalytically active membrane reactor. Chemical Engineering Journal, 323, 434–443.
  • Zhang, W., Qing, W., Chen, N., Ren, Z., Chen, J., & Sun, W. (2014). Enhancement of esterification conversion using novel composite catalytically active pervaporation membranes. Journal of Membrane Science, 451, 285–292.
  • Zhang, W., Qing, W., Ren, Z., Li, W., & Chen, J. (2014). Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor. Bioresource Technology, 172, 16–21.
  • Liu, Q. (2002). Modeling of esterification of acetic acid with n-butanol in the presence of Zr(SO4)2•4H2O coupled pervaporation. Journal of Membrane Science, 196(2), 171–178.
  • Yushan Zhu, & Hongfang Chen. (1998). Pervaporation separation and pervaporation-esterification coupling using crosslinked PVA composite catalytic membranes on porous ceramic plate. Journal of Membrane Science, 138(1), 123–134.
  • Ma, X.-H., Wen, X., Gu, S.-W., Xu, Z.-L., & Zhang, J.-L. (2013). Preparation and characterization of catalytic TiO2–SPPESK–PES nanocomposite membranes and kinetics analysis in esterification. Journal of Membrane Science, 430, 62–69.
  • Peters, T. A., Benes, N. E., & Keurentjes, J. T. F. (2007). Preparation of Amberlyst-coated pervaporation membranes and their application in the esterification of acetic acid and butanol. Applied Catalysis A: General, 317(1), 113–119.
  • Peters, T. A., van der Tuin, J., Houssin, C., Vorstman, M. A. G., Benes, N. E., Vroon, Z. A. E. P., … Keurentjes, J. T. F. (2005). Preparation of zeolite-coated pervaporation membranes for the integration of reaction and separation. Catalysis Today, 104(2-4), 288–295.
  • Liu, Q., Jia, P., & Chen, H. (1999). Study on catalytic membranes of H3PW12O40 entrapped in PVA. Journal of Membrane Science, 159(1-2), 233–241.
  • Figueiredo, K. C. de S., Salim, V. M. M., & Borges, C. P. (2008). Synthesis and characterization of a catalytic membrane for pervaporation-assisted esterification reactors. Catalysis Today, 133-135, 809–814.
  • Bagnell, L., Cavell, K., Hodges, A. M., Mau, A. W.-H., & Seen, A. J. 1993. The use of catalytically active pervaporation membranes in esterification reactions to simultaneously increase product yield, membrane permselectivity and flux. Journal of Membrane Science, 85(3), 291–299.
  • David, M. O., Nguyen, Q. T., & Néel, J. (1992). Pervaporation membranes endowed with catalytic properties, based on polymer blends. Journal of Membrane Science, 73(2-3), 129–141.

Esterleşme Reaksiyonlarında Katalitik Membran Destekli Pervaporasyon Uygulamaları

Year 2020, Volume: 7 Issue: 2, 1152 - 1169, 30.12.2020
https://doi.org/10.35193/bseufbd.611971

Abstract

Kimya endüstrisinin gelişmesi, çeşitli kimyasal ve fiziksel işlemlerde daha fazla çözücü kullanılmasına neden olmuştur. Kullanılan solvent miktarının artması da sektöre olan ekonomik yükü arttırmaktadır. Çözücülerin geri kazanılması, yeniden kullanılması ve saflaştırılması endüstrinin temel gereksinimleri haline gelmiştir. Ayrıca yüksek kaliteli, düşük çevresel etkili, verimi yüksek, ekonomik ürün elde edilmesi önemlidir. Katalitik membran destekli pervaporasyon uygulaması, endüstrilerdeki hem reaksiyon hem de ayırma problemlerine yeni alternatif çözümlerinden biri olarak kabul edilmektedir. Katalitik membran destekli pervaporasyon uygulaması gelişen membran teknolojilerinden biridir. Ayırma ve reaksiyon birimlerini birleştiren hibrit ve entegre bir süreçtir. Bu çalışma, esterleştirme reaksiyonlarının katalitik membran destekli pervaporasyon uygulamaları üzerine yoğunlaşmıştır. İlk olarak, katalitik membran, pervaporasyon ve katalitik membran destekli pervaporasyon hakkında bazı önemli bilgiler verilmiştir. Katalitik membran destekli pervaporasyonun farklı konfigürasyonları tanımlanmış ve açıklanmıştır. Hibrit katalitik membran destekli pervaporasyon işlemlerinin avantajları listelenmiştir. Katalitik membran destekli pervaporasyonu etkileyen faktörler kısaca tartışılmıştır. Literatürdeki önemli katalitik membran destekli pervaporasyon çalışmaları, çalışma koşulları ve elde edilen sonuçlar özetlenmiştir.

References

  • Rathod, A. P., Wasewar, K. L., & Sonawane, S. S. (2013). Enhancement of esterification reaction by pervaporation reactor: an intensifying approach. Procedia Engineering, 51, 330–334.
  • Yanti, H., Wikandari, R., Millati, R., Niklasson, C., & Taherzadeh, M. J. (2014). Effect of ester compounds on biogas production: beneficial or detrimental?. Energy Science & Engineering, 2(1), 22–30.
  • Yuan, H.-K., Ren, J., Ma, X.-H., & Xu, Z.-L. (2011). Dehydration of ethyl acetate aqueous solution by pervaporation using PVA/PAN hollow fiber composite membrane. Desalination, 280(1-3), 252–258.
  • Zhang, X. H., Liu, Q. L., Xiong, Y., Zhu, A. M., Chen, Y., & Zhang, Q. G. (2009). Pervaporation dehydration of ethyl acetate/ethanol/water azeotrope using chitosan/poly (vinyl pyrrolidone) blend membranes. Journal of Membrane Science, 327(1-2), 274–280.
  • Brown, W., Foote, C., Iverson, B., & Anslyn, E. (2011). Organic Chemistry, 5th Edition, Brooks/Cole Cengage Learning, USA.
  • Wasewar, K., Patidar, S., & Agarwal, V. K. (2009). Esterification of lactic acid with ethanol in a pervaporation reactor: modeling and performance study. Desalination, 243(1-3), 305–313.
  • Das, S., Banthia, A.K., & Adhikari B. (2007). Improved conversion to ethyl acetate through removal of water of esterification by membrane pervaporation. Indian Journal of Chemical Technology, 14, 552–559.
  • Cannilla, C., Bonura, G., & Frusteri, F. (2017). Potential of Pervaporation and Vapor Separation with Water Selective Membranes for an Optimized Production of Biofuels—A Review. Catalysts, 7, 187.
  • Marszałek, J., Rdzanek, P., & Kamiński, W. (2014). Improving performance of pervaporation membranes for biobutanol separation. Desalination and Water Treatment, 56(13), 3535–3543.
  • Wang, Q.W., Shi, B.L., & Ji, L.Y., (2014). Pervaporation separation of ethanol via adsorbent-filled silicon rubber membranes. Membrane Water Treatment International Journal, 5, 265-279.
  • Chapman, P. D., Oliveira, T., Livingston, A. G., & Li, K. (2008). Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science, 318(1-2), 5–37.
  • Shi, G. M., Zuo, J., Tang, S. H., Wei, S., & Chung, T. S. (2015). Layer-by-layer (LbL) polyelectrolyte membrane with Nexar™ polymer as a polyanion for pervaporation dehydration of ethanol. Separation and Purification Technology, 140, 13–22.
  • Meireles, I. T., Portugal, C., Alves, V. D., Crespo, J. G., & Coelhoso, I. M. (2015). Impact of biopolymer purification on the structural characteristics and transport performance of composite polysaccharide membranes for pervaporation. Journal of Membrane Science, 493, 179–187.
  • Toti, U. S., & Aminabhavi, T. M. (2004). Synthesis and characterization of polyacrylamidegrafted sodium alginate membranes for pervaporation separation of water + isopropanol mixtures. Journal of Applied Polymer Science, 92(3), 2030–2037.
  • Toti, U. S., & Aminabhavi, T. M. (2004). Different viscosity grade sodium alginate and modified sodium alginate membranes in pervaporation separation of water + acetic acid and water + isopropanol mixtures. Journal of Membrane Science, 228(2), 199–208.
  • Naidu, B.K., Sairam, M., Raju, K., & Aminabhavi, T. (2005). Thermal, viscoelastic, solution and membrane properties of sodium alginate/hydroxyethylcellulose blends. Carbohydrate Polymers, 61(1), 52–60.
  • Naidu, B.V.K., Rao, K.S.V.K., & Aminabhavi, T.M. (2005). Pervaporation separation of water+1,4-dioxane and water+tetrahydrofuran mixtures using sodium alginate and its blend membranes with hydroxyethylcellulose—A comparative study. Journal of Membrane Science, 260(1-2), 131–141.
  • Ozdemir, S., Buonomenna, M., & Drioli, E. (2006). Catalytic polymeric membranes: preparation and application. Applied Catalysis A: General, 307(2), 167–183.
  • Bruggen, B.V. (2010). Pervaporation Membrane Reactors. Comprehensive Membrane Science and Engineering 1st ed. Academic Press, Oxford, 135–163.
  • Peters, T.A. (2006). Catalytic pervaporation membranes for close integration of reaction and separation, Phd Thesis, Technische Universiteit Eindhoven, Eindhoven.
  • Zhu, M.-H., Feng, Z.-J., Hua, X.-M., Hu, H., Xia, S.-L., Hu, N., Kita, H. (2016). Application of a mordenite membrane to the esterification of acetic acid and alcohol using sulfuric acid catalyst. Microporous and Mesoporous Materials, 233, 171–176.
  • Sert, E., & Atalay, F. S. (2014). n-Butyl acrylate production by esterification of acrylic acid with n-butanol combined with pervaporation. Chemical Engineering and Processing: Process Intensification, 81, 41–47.
  • Parulekar, S. J. (2007). Analysis of pervaporation-aided esterification of organic acids. Industrial & Engineering Chemistry Research, 46(25), 8490–8504.
  • Peters, T. A., Benes, N. E., & Keurentjes, J. T. F. (2005). Zeolite-coated ceramic pervaporation membranes; pervaporation−esterification coupling and reactor evaluation. Industrial & Engineering Chemistry Research, 44(25), 9490–9496.
  • Figueiredo, K. C. de S., Salim, V. M. M., & Borges, C. P. (2008). Synthesis and characterization of a catalytic membrane for pervaporation-assisted esterification reactors. Catalysis Today, 133-135, 809–814.
  • Dioos, B. M. L., Vankelecom, I. F. J., & Jacobs, P. A. (2006). Aspects of ımmobilisation of catalysts on polymeric supports. Advanced Synthesis & Catalysis, 348(12-13), 1413–1446.
  • Shaban, H. I. (1998). Hydrolysis of ethyl acetate:a pervaporation study. European Polymer Journal, 34(7), 955–973.
  • Nandiwale, K. Y., Sonar, S. K., Niphadkar, P. S., Joshi, P. N., Deshpande, S. S., Patil, V. S., & Bokade, V. V. (2013). Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Applied Catalysis A: General, 460-461, 90–98.
  • Fernandes, D. R., Rocha, A. S., Mai, E. F., Mota, C. J. A., & Teixeira da Silva, V. (2012). Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Applied Catalysis A: General, 425-426, 199–204.
  • Kuwahara, Y., Fujitani, T., & Yamashita, H. (2014). Esterification of levulinic acid with ethanol over sulfated mesoporous zirconosilicates: Influences of the preparation conditions on the structural properties and catalytic performances. Catalysis Today, 237, 18–28.
  • Omota, F., Dimian, A. ., & Bliek, A. (2003). Fatty acid esterification by reactive distillation: Part 2—kinetics-based design for sulphated zirconia catalysts. Chemical Engineering Science, 58(14), 3175–3185.
  • Zatta, L., Gardolinski, J. E. F. da C., & Wypych, F. (2011). Raw halloysite as reusable heterogeneous catalyst for esterification of lauric acid. Applied Clay Science, 51(1-2), 165–169.
  • Unlu, D., & Durmaz Hilmioglu, N. (2016). Synthesis of Ethyl Levulinate as a Fuel Bioadditive by a Novel Catalytically Active Pervaporation Membrane. Energy & Fuels, 30(4), 2997–3003.
  • Rezac, M.E. (2000). Catalytic Membrane Reactors. Encyclopedia of Separation Science 1st ed. Academic Press, Germany,1676-1682.
  • Chopade, S.P., Mahajani, S.M. (2000). Pervaporation:Membrane Separations. Encyclopedia of Separation Science, 1st ed. Academic Press, Germany, 3636-3638.
  • Zhu, Y., Xia, S., Liu, G., & Jin, W. (2010). Preparation of ceramic-supported poly(vinyl alcohol)–chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures. Journal of Membrane Science, 349(1-2), 341–348.
  • Feng, X., & Huang, R. Y. M. (1997). Liquid separation by membrane pervaporation: a review. Industrial & Engineering Chemistry Research, 36(4), 1048–1066.
  • Solak, E.K. (2005). Separation of dimethylformamide-water mixtures using sodium alginate, sodium alginate/poly(vinyl pyrrolidone) and N-vinyl-2-pyrrolidone-g-sodium alginate membranes, Phd Thesis, Gazi University, Institute of Science and Technology, Ankara.
  • Brüschke, H.E.A., Wynn, N.P. (2000). Membrane Separations/Pervaporation. Encyclopedia of Separation Science, Academic Press, Germany, 1776-1778.
  • Doğan, H. (2007). Zeolite filled polimeric membranes for pervaporation applications, Phd Thesis, Kocaeli University, Institute of Science and Technology, Kocaeli.
  • Ceia, T. F., Silva, A. G., Ribeiro, C. S., Pinto, J. V., Casimiro, M. H., Ramos, A. M., & Vital, J. (2014). PVA composite catalytic membranes for hyacinth flavour synthesis in a pervaporation membrane reactor. Catalysis Today, 236, 98–107.
  • Unlu, D., & Hilmioglu, N. D. (2016). Pervaporation catalytic membrane reactor study for the production of ethyl acetate using Zr(SO4)2.4H2O coated chitosan membrane. Journal of Chemical Technology & Biotechnology, 91(1), 122–130.
  • Xu, W., Xu, J., Gao, L., & Xiao, G. (2015). Preparation and characterization of inorganic acid catalytic membrane for biodiesel production from oleic acid. Asia-Pacific Journal of Chemical Engineering, 10(6), 851–857.
  • Assabumrungrat, S., Phongpatthanapanich, J., Praserthdam, P., Tagawa, T., & Goto, S. (2003). Theoretical study on the synthesis of methyl acetate from methanol and acetic acid in pervaporation membrane reactors: effect of continuous-flow modes. Chemical Engineering Journal, 95(1-3), 57–65.
  • Buonomenna, M. G., Choi, S. H., & Drioli, E. (2010). Catalysis in polymeric membrane reactors: the membrane role. Asia-Pacific Journal of Chemical Engineering, 5(1), 26–34.
  • Zhang, F. (2012). Development and scale-up of enhanced polymeric membrane reactor systems for organic synthesis. Ph.D. Thesis, Kansas State University, Manhattan.
  • Li, J., Chen, X., Qi, B., Luo, J., Zhuang, X., Su, Y., & Wan, Y. (2013). Continuous acetone–butanol–ethanol (abe) fermentation with in situ solvent recovery by silicalite-1 filled pdms/pan composite membrane. Energy & Fuels, 28(1), 555–562.
  • Nunes, S.P. & Peinemann, K.V. (2006). Membrane Technology in the Chemical Industry, Wiley, Germany, 354 pp.
  • Sun, H., Sun, D., Shi, X., Li, B., Yue, D., Xiao, R., Ren, P., Zhang, J. (2020). PVA/SO42−-AAO difunctional catalytic-pervaporation membranes: Preparation and characterization. Separation and Purification Technology, 241, 116739.
  • Li, M., Zhang, W., Zhou, S., & Zhao, Y. (2020). Preparation of poly (vinyl alcohol)/palygorskite-poly (ionic liquids) hybrid catalytic membranes to facilitate esterification. Separation and Purification Technology, 230, 115746.
  • Cao, Z., Xia, C., Jia, W., Qing, W., & Zhang, W. (2020). Enhancing bioethanol productivity by a yeast-immobilized catalytically active membrane in a fermentation-pervaporation coupling process. Journal of Membrane Science, 595, 117485.
  • Li, Y., Han, S., Zhang, L., Li, W., & Xing, W. (2019). Fabrication and modeling of catalytic membrane for removing water in esterification. Journal of Membrane Science, 579, 120–130.
  • Zhang, L., Li, Y., Liu, Q., Li, W., & Xing, W. (2019). Fabrication of ionic liquids-functionalized PVA catalytic composite membranes to enhance esterification by pervaporation. Journal of Membrane Science. 584, 268-281.
  • Unlu, D., & Durmaz Hilmioglu, N. (2019). Production Of Fuel Bioadditive “Triacetin” by usıng phosphomolybdic acid loaded pva membrane in pervaporatıon catalytic membrane reactor. Energy & Fuels, 33, 2208−2218.
  • Unlu, D., & Hilmioglu, N. D. (2018). Pervaporation catalytic membrane reactor application over functional chitosan membrane. Journal of Membrane Science, 559, 138–147.
  • Unlu, D., Ilgen, O., & Durmaz Hilmioglu, N. (2017). Reactive separation system for effective upgrade of levulinic acid into ethyl levulinate. Chemical Engineering Research and Design, 118, 248–258.
  • Nigiz, F. U., & Hilmioglu, N. D. (2016). Simultaneous separation performance of a catalytic membrane reactor for ethyl lactate production by using boric acid coated carboxymethyl cellulose membrane. Reaction Kinetics, Mechanisms and Catalysis, 118(2), 557–575.
  • Nigiz, F. U., & Hilmioglu, N. D. (2016). Rhizomucor miehei lipase-immobilized sodium alginate membrane preparation and usage in a pervaporation biocatalytic membrane reactor. Chemical and Biochemical Engineering Quarterly, 30, 381–391.
  • Qing, W., Wu, J., Chen, N., Liu, L., Deng, Y., & Zhang, W. (2017). A genuine in-situ water removal at a molecular lever by an enhanced esterification-pervaporation coupling in a catalytically active membrane reactor. Chemical Engineering Journal, 323, 434–443.
  • Zhang, W., Qing, W., Chen, N., Ren, Z., Chen, J., & Sun, W. (2014). Enhancement of esterification conversion using novel composite catalytically active pervaporation membranes. Journal of Membrane Science, 451, 285–292.
  • Zhang, W., Qing, W., Ren, Z., Li, W., & Chen, J. (2014). Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor. Bioresource Technology, 172, 16–21.
  • Liu, Q. (2002). Modeling of esterification of acetic acid with n-butanol in the presence of Zr(SO4)2•4H2O coupled pervaporation. Journal of Membrane Science, 196(2), 171–178.
  • Yushan Zhu, & Hongfang Chen. (1998). Pervaporation separation and pervaporation-esterification coupling using crosslinked PVA composite catalytic membranes on porous ceramic plate. Journal of Membrane Science, 138(1), 123–134.
  • Ma, X.-H., Wen, X., Gu, S.-W., Xu, Z.-L., & Zhang, J.-L. (2013). Preparation and characterization of catalytic TiO2–SPPESK–PES nanocomposite membranes and kinetics analysis in esterification. Journal of Membrane Science, 430, 62–69.
  • Peters, T. A., Benes, N. E., & Keurentjes, J. T. F. (2007). Preparation of Amberlyst-coated pervaporation membranes and their application in the esterification of acetic acid and butanol. Applied Catalysis A: General, 317(1), 113–119.
  • Peters, T. A., van der Tuin, J., Houssin, C., Vorstman, M. A. G., Benes, N. E., Vroon, Z. A. E. P., … Keurentjes, J. T. F. (2005). Preparation of zeolite-coated pervaporation membranes for the integration of reaction and separation. Catalysis Today, 104(2-4), 288–295.
  • Liu, Q., Jia, P., & Chen, H. (1999). Study on catalytic membranes of H3PW12O40 entrapped in PVA. Journal of Membrane Science, 159(1-2), 233–241.
  • Figueiredo, K. C. de S., Salim, V. M. M., & Borges, C. P. (2008). Synthesis and characterization of a catalytic membrane for pervaporation-assisted esterification reactors. Catalysis Today, 133-135, 809–814.
  • Bagnell, L., Cavell, K., Hodges, A. M., Mau, A. W.-H., & Seen, A. J. 1993. The use of catalytically active pervaporation membranes in esterification reactions to simultaneously increase product yield, membrane permselectivity and flux. Journal of Membrane Science, 85(3), 291–299.
  • David, M. O., Nguyen, Q. T., & Néel, J. (1992). Pervaporation membranes endowed with catalytic properties, based on polymer blends. Journal of Membrane Science, 73(2-3), 129–141.
There are 70 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Derya Ünlü 0000-0001-5240-5876

Publication Date December 30, 2020
Submission Date August 27, 2019
Acceptance Date June 29, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

APA Ünlü, D. (2020). Catalytic Membrane Aided Pervaporation Applications in Esterification Reactions. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(2), 1152-1169. https://doi.org/10.35193/bseufbd.611971