Year 2021, Volume 8 , Issue 1, Pages 65 - 77 2021-06-30

Fe Elementinin Kristal ve Camsı Faza Dönüşümünün Hidrostatik Basınç Altında İncelenmesi: Moleküler Dinamik Benzetim Çalışması
The Investigations under the Hydrostatic Pressure of the Crystal and Glass Phase Transformation Temperatures of the Fe Element: A Molecular Dynamic Simulations Study

Sefa KAZANÇ [1] , Canan AKSU CANBAY [2]


Bu çalışmada moleküler dinamik benzetim yöntemi ile 4000 atomdan oluşan sıvı Fe model sistemi 0 GPa, 5 GPa,7 GPa basınç değerleri altında 1x1012 K/s ve 1x1013 K/s soğutma hızları ile soğutularak kristal ve camsı geçiş sıcaklıklarının yapı içerisinde oluşturdukları farklı birim hücreli atomik kümelenmeler belirlenmeye çalışıldı. Atomlar arası etkileşmelerin hesaplanmasında çok cisim etkileşmelerini temel alan Gömülmüş Atom Metodu kullanıldı. Basınç artışının, sıvı fazdan soğutulan Fe deki kristal ve amorf yapıların oluşumuna ve bu yapılara geçiş sıcaklıkları üzerinde etkili olduğu görüldü. Kristal ve amorf faza geçiş (Tg) sıcaklıklarının belirlenmesi için birim atom başına bağlanma enerjisi ve Wendt-Abraham parametresinden yararlanıldı. Ayrıca sıvı fazdan katılaşma esnasında Fe model sistemde oluşan farklı birim hücre yapılarının yüzdesi Ackland-Jones analiz yöntemi kullanılarak belirlendi.

In this study, the liquid Fe model system, which consists of 4000 atoms with molecular dynamic simulation method, is cooled under 0 GPa, 5 GPa, 7 GPa pressure values with 1x1012 K / s and 1x1013 K / s cooling rates, and the different unit cell atomic atomic structure formed by crystal and glass transition temperatures in the structure. clusters were tried to be determined. The Embedded Atom Method, which is based on many body interactions, was used in the calculation of interactions between atoms. It was seen that the pressure increase had an effect on the formation of crystal and amorphous structures in Fe cooled from the liquid phase and the transition temperatures to these structures. Binding energy per unit atom and the Wendt-Abraham parameter were used to determine the crystal and amorphous phase transition (Tg) temperatures. In addition, the percentage of different unit cell structures formed in the Fe model system during solidification from the liquid phase was determined using the Ackland-Jones analysis method.

  • Zhang, Y.,& Jiang, S.(2018). Atomistic mechanisms for temperature-induced crystallization of amorphous copper based on molecular dynamics simulation. Computational Materials Science, 151, Pages 25-33.
  • Giang, N.H.,& Hoang, V.V. Hoang (2021). Influences of cooling rate on formation of amorphous germanene. Physica E: Low-dimensional Systems and Nanostructures Volume 126, 114492.
  • Ghaemi, M., & Tavakoli, R. (2020). Universal correlation between the thermodynamic potentials and some physical quantities of metallic glasses as a function of cooling rate during molecular dynamics simulation. Journal of Non-Crystalline Solids, Volume 536, 119999.
  • Samiri, A., Khmich, A., Haouas, H., Hasnaoui, A. (2020). Structural and mechanical behaviors of Mg-Al metallic glasses investigated by molecular dynamics simulations. Computational Materials Science, Volume 184, 109895.
  • Cong, H.R., Bian, X.F., Zhang, J.X., Li, H. (2002).Structure properties of Cu-Ni alloys at the rapid cooling rate using embedded-atom method. Mat. Sci. Eng. A 326, 343–347.
  • Qi, L., Zhang, H.F., Hu, Z.Q., Liaw, P.K. (2004).Molecular dynamic simulation studies of glass formation and atomic-level structures in Pd–Ni alloy. Phys. Lett. A 327, 506–511.
  • Wang, W.H., Dong, C., Shek, C.H., (2004). Bulk metallic glasses. Materials Science and Engineering R 44, 45–89.
  • Qi, L., Zhang, H.F., Hu, Z.Q. (2004).Molecular dynamic simulation of glass formation in binary liquid metal: Cu–Ag using EAM. Intermetallics12, 1191–1195.
  • Ozgen, S.,& Duruk, E.(2004). Molecular dynamics simulation of solidification kinetics of aluminium using Sutton–Chen version of EAM. Materials Letters, Volume 58, Issue 6, Pages 1071-1075.
  • Schroers J., Pham Q., Peker A., Paton N., Curtis, R.V. (2007). Blow Molding of Bulk Metallic Glass. Scripta Materialia, 57, 341-344.
  • Laws, K. J., Gun B., Ferry, M., (2006). Effect of die casting parameters on production of high quality bulk metallic glass samples. Mater. Sci. and Eng. A 425, 114-120.
  • Busch, R., Kim, Y.L., Johnson W. L. (1995). Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. J.Appl. Phys. vol 77, No 8, 4039-4043.
  • Luzzi, D. E.,& Meshi, M. (1986). Criteria for the Amorphisation of Intermetallic Compounds Under Electron Irradiation. Res. Mech., 21, p.943-948.
  • Shultz, L. (1999). Recent Development and Application Products of Bulk Glassy Alloys. Mater. Sci., Eng., 97, p.151- 162.
  • Tuli, M., Strutt, P. R., Nowotny, H., Kear, B. H. (1978). “Laser Surface Melting of High Speed Tool Steels,” in Rapid Solidification Processing: Principles and Technologies, edited by R. Mehrabian, B. H. Kear, and M. Cohen, Claitor’s Publishing Division, Baton Rouge, Louisiana, pp. 113–116.
  • Karewar, S., Sietsma, J., Santofimia, M.J. (2018). Effect of pre-existing defects in the parent fcc phase on atomistic mechanisms during the martensitic transformation in pure Fe: A molecular dynamics study. Acta Materialia, Vol.142, 71-81.
  • Singh, S. B.(2012). Mechanisms of bainite transformation in steels. Phase Transformations in Steels, Vol 1, 385-416.
  • Porter, D.A., & Easterling, K.E. (1992).Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, London.
  • Pepperhoff, W., & Acet, M. (2001). Constitution and Magnetism of Iron and its Alloys, Springer, Berlin.
  • Pereloma, E.,& Edmonds D.V. (Eds.) (2012).Phase Transformations in Steels, vol. 2, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, Woodhead Publishing Limited, Cambridge, UK.
  • Haasen, P.(1994). Physikalische Metallkunde, 3rd ed., Springer.
  • Entel, P., Meyer, R., Kadau, K., Herper, H.C., Hoffmann, E. (1998).Eur. Phys. J. B, 5: 279.
  • Porter, D.A.,& Easterling, K.E. (1992).Phase transformations in metals and alloys (2nd ed.), Chapman & Hall, London.
  • Pepperhoff, W.,& Acet, M. (2001). Constitution and Magnetism of Iron and its Alloys, Springer, Berlin.
  • Pereloma, E.,& Edmonds D.V. (Eds.) (2012).Phase Transformations in Steels, vol. 2, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, Woodhead Publishing Limited, Cambridge, UK.
  • Lee, B., Shim, J., Baskes, M. I. (2003). Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B, 68B, 144112.
  • Tateyama, S., Shibuta, Y., Kumagai, T., Suzuki, T.,(2011).ISIJ Int. 51, 1710.
  • Lee, T., Baskes, M. I., Valone, S.M., Doll, J.D.(2012).J. Phys.: Condens. Matter 24, 225404.
  • Finnis, M. W.,& Sinclair, J. E.(1986). Philos. Mag. A 50 (1984) 45. Erratum: 53, 161.
  • Johnson, R.A., & Oh, D.J. (1989). Analytic embedded atom method model for bcc metals. Journal of Materials Research 4, 1195–1201
  • Marque´s, L.A., Pelaz, L., Aboy, M., Lopez, P., Barbolla, J. (2005). Atomistic modelling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Comput. Mat. Sci., 33, 92-105.
  • Shao, Y., Clapp, P.C., Rifkin, J.A. (1996). Molecular dynamics simulation of martensitic transformations in NiAl. Metall. Mater. Trans. A, 27A, 1477-1489.
  • Daw, M.S., Hatcher, R.D. (1985). Application of the embedded atom method to phonons in transition metals. Solid State Comm., 56, 697-699.
  • Voter, A.F., Chen, S.P. (1987). Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc., 82, 175.
  • Finnis, M.W., & Sinclair, J.E. (1984). A simple empirical N-body potential for transition metals. Philosophical Magazine, 50, 45-55.
  • Sutton, A.P., Chen, J. (1990). Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 61, 139-146.
  • Parrinello, M., & Rahman, A.(1980). Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett., 45: 1196-1201.
  • Parrinello M., & Rahman, A.(1981). Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 52, 7182-7190.
  • Molecular Dynamics Simulator. http://lammps.sandia.gov/.LAMMPS, (10.09.2020).
  • Voter, A.F.,& Chen, S.P.(1987). Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc., 82: 175.
  • Finnis, M.W., & Sinclair, J.E. (1984). A simple empirical N-body potential for transition metals. Philosophical Magazine, 50, 45-55.
  • Etesami, S. A.,& Asadi, E. (2018). Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method. Journal of Physics and Chemistry of Solids, 112, 61–72.
  • Chamati, H., Papanicolaou, N.I., Mishin, Y., Papaconstantopoulos, D.A. (2006). Embedded-atom potential for Fe and its application to self-diffusion on Fe (100).Surface Science, 600, 1793–1803.
  • Mendelev, M. I., Han, S., Srolovitz, D. J., Ackland, G. J., Sun, D.Y., Asta, M. (2003). Development of new interatomic potentials appropriate for crystalline and liquid iron. Philosophical Magazine, Vol. 83, No. 35, 3977–3994.
  • Ding, S., Tian, Y., Jiang, Z., He, X. (2015). Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint. Aip Advances 5, 057120.
  • Erhart, P., Marian J., Sadigh, B. (2013). Thermodynamic and mechanical properties of copper precipitates in α-iron from atomistic simulations. Physical Review B 88, 024116.
  • Ackland, G. J.,& Jones, A. P. (2006). Applications of local crystal structure measures in experiment and simulation.Physical Review B, 73, 054104.
  • Rigby, M., Smith, E. B., Wakeham, W. A., Maitland, G.C. (1986).The forces between molecules, published by Oxford University Press, Clarendon Press, 144, New York.
  • Engin, C.,& Urbassek, H. M. (2008). Molecular-dynamics investigation of the fcc-bcc phase transformation in Fe. Computational Materials Science, 41: 297–304.
  • Karimi, M., Stapay, G., Kaplan, T.,Mostoller, M. (1997).Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties. Modelling Simul. Mater. Sci. Eng., 5, 337.
  • Weissavach, W. (2009).Malzeme Bilgisi ve Muayenesi, Birsen Yayın evi. 5. Baskı, İstanbul.
  • Schuh, C. A., Hufnagel,T. C., Ramamurty, U. (2007). Mechanical behavior of amorphous alloys. Acta Materialia 55, 4067-4109.
  • Shimojo, F., Hoshino, K., Zempo, Y. (2002).Intermediate-range order in liquid and amorphous As2S3 by ab initio molecular-dynamics simulations. Journal of Non-Crystalline Solids, 312-314, 388.
  • Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 18, 015012.
  • Abraham, F. F. (2015). The local atomic packing of a single-component glass is quasi-crystalline. Materials Science (cond-mat.mtrl-sci), arXiv:1504.05751.
Primary Language tr
Subjects Basic Sciences
Journal Section Articles
Authors

Orcid: 0000-0002-8896-8571
Author: Sefa KAZANÇ
Institution: Fırat Üniversitesi
Country: Turkey


Orcid: 0000-0002-5151-4576
Author: Canan AKSU CANBAY (Primary Author)
Institution: Fırat Üniversitesi, Fen Fakültesi, Fizik Bölümü
Country: Turkey


Dates

Application Date : December 2, 2020
Acceptance Date : February 19, 2021
Publication Date : June 30, 2021

APA Kazanç, S , Aksu Canbay, C . (2021). Fe Elementinin Kristal ve Camsı Faza Dönüşümünün Hidrostatik Basınç Altında İncelenmesi: Moleküler Dinamik Benzetim Çalışması . Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi , 8 (1) , 65-77 . DOI: 10.35193/bseufbd.834839