Research Article
BibTex RIS Cite

Hardox 450 Çeliğinin Lazerle Delinmesinde Kesme Parametrelerinin Delik Kalitesi Üzerine Etkisinin İncelenmesi ve Kesme Parametrelerinin Optimizasyonu

Year 2021, Volume: 8 Issue: 2, 913 - 923, 31.12.2021
https://doi.org/10.35193/bseufbd.977412

Abstract

Bu çalışmada, Hardox 450 çeliğinin lazerle delme işleminde kesme parametrelerinin (odak noktası, kesme hızı, gaz basıncı ve lazer gücü) yüzey pürüzlülüğü ile üst ve alt delik dairesellik toleransı üzerine etkisi incelenmiştir. Lazer kesme işlemi için deney tasarımı, Taguchi L18 ortogonal dizinine göre yapılmıştır. Deneylerde kesme parametreleri olarak; iki farklı odak noktası, üç farklı gaz basıncı, üç farklı kesme hızı ve üç farklı lazer gücü seçilmiştir. Taguchi yöntemine göre lazer delme işleminde kullanılan kesme parametreleri optimize edildi. Ayrıca kesme parametrelerinin yüzey pürüzlülüğü ile üst ve alt delik dairesellik toleransı üzerine etkilerinin belirlenmesi için varyans (ANOVA) analizi yapılmıştır. Sonuç olarak; Hardox 450 çeliğinin delinmesinde kesme hızının ve lazer gücünün artması yüzey pürüzlülüğünün azalmasına neden olurken gaz basıncının ve odak noktasının artması yüzey pürüzlülüğünün artmasına neden olmuştur. Gaz basıncı, kesme hızı ve lazer gücünün artması ile üst ve alt delik dairesellik toleransı artarken, odak noktasının azalması üst ve alt delik dairesellik toleransının azalmasına neden olmuştur. En düşük yüzey pürüzlülüğü 0,718 µm için optimum kesme parametreleri -1 mm odak noktası, 0,7 bar gaz basıncı, 1500 mm/sn kesme hızı ve 2600 W lazer gücü olarak belirlenmiştir. Üst ve alt delik için sırası ile en küçük boyutsal tamlık 20,069 mm ve 20,024 mm için optimum kesme parametreleri -1 mm odak noktası, 0,7 bar gaz basıncı, 1100 mm/sn kesme hızı ve 2200 W lazer gücü olmuştur. Varyans analizi sonucu yüzey pürüzlülüğü ile üst ve alt delik dairesellik toleransı için sırası ile en etkin parametre %77,17 %51,40 ve %71,80 ile gaz basıncı olmuştur.

References

  • Adamiak, M., Górka, J., & Kik, T., (2009). Comparison of abrasion resistance of selected constructional materials, The Journal of Achievements in Materials and Manufacturing Engineering, 37(2), 375-380.
  • Mindivan, H., (2013). Effects of combined diffusion treatments on the wear behaviour of hardox 400 steel, Procedia Engineering, 68, 710-715.
  • Yılmaz, D., Aktaş, B., Çalık, A., & Aytar, O. B., (2019). Boronizing effect on the radiation shielding properties of Hardox 450 and Hardox HiTuf steels, Radiation Physics and Chemistry, 161, 55-59.
  • Aktaş, B., Toprak, M., Çalık, A., & Tekgüler A. (2020). Effect of pack-boriding on the tribological behavior of Hardox 450 and HiTuf Steels, Reviews on Advanced Materials Science, 59(1), 314-321.
  • Dubey, A. K., & Yadava, V, (2008). Optimization of kerf quality during pulsed laser cutting of aluminium alloy sheet, Journal of Materials Processing Technology, 204(1.3), 412-418.
  • Khoshaim, A. B., Elsheikh, A. H., Moustafa E. B., Basha, M., & Showaib E. A., (2021). Experimental investigation on laser cutting of PMMA sheets: Effects of processfactors on kerf characteristics, Journal of Materials Research and Technology, 11, 235-246.
  • Rajaram, N., Sheikh-Ahmad, J., & Cheraghi S. H., (2003). CO2 laser cut quality of 4130 steel, International Journal of Machine Tools and Manufacture, 43(4), 351-358.
  • Rajendran, N., Pate, M.B., (1988). The effect of laser beam velocity on cut quality and surface temperature, American Society of Mechanical Engineers, Heat Transfer Division, vol. 104, pp. 121-127.
  • Neimeyer, R., Smith, R. N., & Kaminski D. A. (1993). Effects of operating parameters on surface quality for laser cutting of mild steel, Journal of Engineering for Industry, 115, 359-366.
  • Wandera, C. (2006). Laser cutting of austenitic stainless steel with a high quality laser beam, M.S. Thesis, Lappeenranta University of Technology, 127-128, Finland.
  • Dubey, A. K., & Yadava., V. (2008). Multi-objective optimisation of laser beam cutting process, Optics&Laser Technology,40(3), 562-570.
  • Rajaram, N., Sheikh-Ahmad, J., & Cheraghi, S. H. (2003). CO2 laser cut quality of 4130 steel, International Journal of Machine Tools and Manufacture, 43(4), 351-358.
  • Lamikiz, A., Lacalle, L. N. L., Sanchez, J. A., Pozo, D., Etayo, J. M., & Lopez, J. M. (2005). CO2 laser cutting of advanced high strength steels (AHSS), Applied Surface Science, 242(3-4), 362-368.
  • Yilbas, B. S., Shaukat, M. M., & Ashraf, F. (2017). Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process, Optics&Laser Technology, 93, 67-73.
  • Zaied, M., Bayraktar, E., Katundi, D., Boujelbene, M., & Miraoui, I., (2012). Effect of laser cutting parameters on surface quality of low carbon steel (S235), Journal of Achievements in Materials and Manufacturing Engineering, 54,(1), 128-134.
  • Davim, J. P., Barricas, N., Conceicao, M., & Oliveira, C., (2008). Some experimental studies on CO2 laser cutting quality of polymeric materials, Journal of Materials Processing Technology, 198(1-3), 99-104.
  • Pandey, A. K., & Dubey, A. K. (2012). Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet, Optics&Laser Technology, 44(6), 1858-1865.
  • Işık, R., Özlü, B., & Demir, H., (2021). St-37 Malzemesinin lazer ile kesme işleminde seçilen parametrelerin etkisinin deneysel ve istatiksel olarak incelenmesi, Fırat Üniversitesi Müh. Bil. Dergisi, 33(1), 161-171.
  • Janković, P., Madić, M., Radovanović, M., Petković, D., & Mladenović, S. (2019). Optimization of surface roughness from different aspects in high-power CO2 laser cutting of AA 5754 aluminum alloy, Arabian Journal for Science and Engineering, (44),10245-10256.
  • Özlü, B., (2021). Experimental and statistical investigation of the effects of cutting parameters on kerf quality and surface roughness in laser cutting of Al 5083 alloy, Surface Review and Letters, 28(20), 1-18.
  • Araujo, D.,Carpio, F. J., Mendez, D., Garcıa, A. J., Villar, M. P., Garcıa, R., Jimenez, D., & Rubio, L. (2003). Microstructural study of CO2 laser machined heat affected zone of 2024 aluminum alloy, Applied Surface Science, 208, 210-217.
  • Madić, M., & Radovanović, M. (2013). Application of RCGA-ANN approach for modeling kerf width and surface roughness in CO2 laser cutting of mild steel, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 35, 103-110.
  • Akgün, M., & Demir, H. (2021). Estimation of surface roughness and flank wear in milling of Inconel 625 superalloy, Surface Review and Letters, 28(4), 1-12.
  • Yaka, H. (2021). Measurement of surface quality and optimization of cutting parameters in slot milling of GFRP composite materials with different fıber ratios produced by pultrusion method, Surface Review and Letters, 28(10), 1-18.
  • Nas, E., & Akıncıoğlu, S. (2019). Kriyojenik işlem görmüş nikel esaslı süper alaşımın elektro-erozyon işleme performansı optimizasyonu, Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 7(1), 115-126.
  • Nas, N., & Altan Ö. N. (2019). Optimization the machining parameters in turning of hardened hot work tool steel using cryogenically treated tools, Surface Review and Letters, 1950177, 1-14.

Optimization of Cutting Parameters and Investigation of the Effect of Cutting Parameters on Hole Quality in Laser Drilling of Hardox 450 Steel

Year 2021, Volume: 8 Issue: 2, 913 - 923, 31.12.2021
https://doi.org/10.35193/bseufbd.977412

Abstract

In this study, the effects of cutting parameters (focal point, cutting speed, gas pressure, and laser power) on surface roughness with top and bottom-hole circularity tolerance were investigated in laser drilling of Hardox 450 steel. The experimental design for the laser cutting process was made according to the Taguchi L18 orthogonal array. As the cutting parameters in the experiments; two different focus points, three different gas pressures, three different cutting speeds, and three different laser powers were selected. The cutting parameters used in the laser drilling process were optimized according to the Taguchi method. In addition, variance (ANOVA) analysis was performed to determine the effects of cutting parameters on surface roughness with tolerance of top and bottom hole circularity. In conclusion; while the increase in cutting speed and laser power in the drilling of Hardox 450 steel caused a decrease in surface roughness, the increase in gas pressure and focus point caused an increase in surface roughness. With the increase of gas pressure, cutting speed, and laser power, the top and bottom hole circularity tolerance increased, while the decrease in the focus point caused the top and bottom hole circularity tolerance to decrease. The optimum cutting parameters for the lowest surface roughness 0.718 µm were determined as -1 mm focus point, 0.7 bar gas pressure, 1500 mm/sec cutting speed, and 2600 W laser power. The optimum cutting parameters for the smallest dimensional accuracy of 20.069 mm and 20.024 mm for the top and bottom holes, respectively, were -1 mm focus point, 0.7 bar gas pressure, 1100 mm/sec cutting speed, and 2200 W laser power. As a result of variance analysis, the most effective parameters for surface roughness and top and bottom hole circularity tolerance were 77.17%, 51.40% and 71.80%, respectively, gas pressure.

References

  • Adamiak, M., Górka, J., & Kik, T., (2009). Comparison of abrasion resistance of selected constructional materials, The Journal of Achievements in Materials and Manufacturing Engineering, 37(2), 375-380.
  • Mindivan, H., (2013). Effects of combined diffusion treatments on the wear behaviour of hardox 400 steel, Procedia Engineering, 68, 710-715.
  • Yılmaz, D., Aktaş, B., Çalık, A., & Aytar, O. B., (2019). Boronizing effect on the radiation shielding properties of Hardox 450 and Hardox HiTuf steels, Radiation Physics and Chemistry, 161, 55-59.
  • Aktaş, B., Toprak, M., Çalık, A., & Tekgüler A. (2020). Effect of pack-boriding on the tribological behavior of Hardox 450 and HiTuf Steels, Reviews on Advanced Materials Science, 59(1), 314-321.
  • Dubey, A. K., & Yadava, V, (2008). Optimization of kerf quality during pulsed laser cutting of aluminium alloy sheet, Journal of Materials Processing Technology, 204(1.3), 412-418.
  • Khoshaim, A. B., Elsheikh, A. H., Moustafa E. B., Basha, M., & Showaib E. A., (2021). Experimental investigation on laser cutting of PMMA sheets: Effects of processfactors on kerf characteristics, Journal of Materials Research and Technology, 11, 235-246.
  • Rajaram, N., Sheikh-Ahmad, J., & Cheraghi S. H., (2003). CO2 laser cut quality of 4130 steel, International Journal of Machine Tools and Manufacture, 43(4), 351-358.
  • Rajendran, N., Pate, M.B., (1988). The effect of laser beam velocity on cut quality and surface temperature, American Society of Mechanical Engineers, Heat Transfer Division, vol. 104, pp. 121-127.
  • Neimeyer, R., Smith, R. N., & Kaminski D. A. (1993). Effects of operating parameters on surface quality for laser cutting of mild steel, Journal of Engineering for Industry, 115, 359-366.
  • Wandera, C. (2006). Laser cutting of austenitic stainless steel with a high quality laser beam, M.S. Thesis, Lappeenranta University of Technology, 127-128, Finland.
  • Dubey, A. K., & Yadava., V. (2008). Multi-objective optimisation of laser beam cutting process, Optics&Laser Technology,40(3), 562-570.
  • Rajaram, N., Sheikh-Ahmad, J., & Cheraghi, S. H. (2003). CO2 laser cut quality of 4130 steel, International Journal of Machine Tools and Manufacture, 43(4), 351-358.
  • Lamikiz, A., Lacalle, L. N. L., Sanchez, J. A., Pozo, D., Etayo, J. M., & Lopez, J. M. (2005). CO2 laser cutting of advanced high strength steels (AHSS), Applied Surface Science, 242(3-4), 362-368.
  • Yilbas, B. S., Shaukat, M. M., & Ashraf, F. (2017). Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process, Optics&Laser Technology, 93, 67-73.
  • Zaied, M., Bayraktar, E., Katundi, D., Boujelbene, M., & Miraoui, I., (2012). Effect of laser cutting parameters on surface quality of low carbon steel (S235), Journal of Achievements in Materials and Manufacturing Engineering, 54,(1), 128-134.
  • Davim, J. P., Barricas, N., Conceicao, M., & Oliveira, C., (2008). Some experimental studies on CO2 laser cutting quality of polymeric materials, Journal of Materials Processing Technology, 198(1-3), 99-104.
  • Pandey, A. K., & Dubey, A. K. (2012). Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet, Optics&Laser Technology, 44(6), 1858-1865.
  • Işık, R., Özlü, B., & Demir, H., (2021). St-37 Malzemesinin lazer ile kesme işleminde seçilen parametrelerin etkisinin deneysel ve istatiksel olarak incelenmesi, Fırat Üniversitesi Müh. Bil. Dergisi, 33(1), 161-171.
  • Janković, P., Madić, M., Radovanović, M., Petković, D., & Mladenović, S. (2019). Optimization of surface roughness from different aspects in high-power CO2 laser cutting of AA 5754 aluminum alloy, Arabian Journal for Science and Engineering, (44),10245-10256.
  • Özlü, B., (2021). Experimental and statistical investigation of the effects of cutting parameters on kerf quality and surface roughness in laser cutting of Al 5083 alloy, Surface Review and Letters, 28(20), 1-18.
  • Araujo, D.,Carpio, F. J., Mendez, D., Garcıa, A. J., Villar, M. P., Garcıa, R., Jimenez, D., & Rubio, L. (2003). Microstructural study of CO2 laser machined heat affected zone of 2024 aluminum alloy, Applied Surface Science, 208, 210-217.
  • Madić, M., & Radovanović, M. (2013). Application of RCGA-ANN approach for modeling kerf width and surface roughness in CO2 laser cutting of mild steel, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 35, 103-110.
  • Akgün, M., & Demir, H. (2021). Estimation of surface roughness and flank wear in milling of Inconel 625 superalloy, Surface Review and Letters, 28(4), 1-12.
  • Yaka, H. (2021). Measurement of surface quality and optimization of cutting parameters in slot milling of GFRP composite materials with different fıber ratios produced by pultrusion method, Surface Review and Letters, 28(10), 1-18.
  • Nas, E., & Akıncıoğlu, S. (2019). Kriyojenik işlem görmüş nikel esaslı süper alaşımın elektro-erozyon işleme performansı optimizasyonu, Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 7(1), 115-126.
  • Nas, N., & Altan Ö. N. (2019). Optimization the machining parameters in turning of hardened hot work tool steel using cryogenically treated tools, Surface Review and Letters, 1950177, 1-14.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fulya Çırakoğlu 0000-0001-5914-4023

Barış Özlü 0000-0002-8594-1234

Halil Demir 0000-0002-9802-083X

Publication Date December 31, 2021
Submission Date August 1, 2021
Acceptance Date September 21, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Çırakoğlu, F., Özlü, B., & Demir, H. (2021). Hardox 450 Çeliğinin Lazerle Delinmesinde Kesme Parametrelerinin Delik Kalitesi Üzerine Etkisinin İncelenmesi ve Kesme Parametrelerinin Optimizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 913-923. https://doi.org/10.35193/bseufbd.977412