Research Article
BibTex RIS Cite

Development of Natural, Edible Colorimetric Smart Label

Year 2025, Volume: 12 Issue: 2, 600 - 608, 30.11.2025
https://doi.org/10.35193/bseufbd.1524797

Abstract

Smart labels are developed using chemicals that respond to gases and pH changes emitted during food spoilage. When food deteriorates, different gases are released, and the pH of the surrounding environment changes. By utilizing pH-responsive (colorimetric) indicator materials, smart labels can be designed. It is essential that the indicator used is derived from natural sources or is non-toxic, as it must be safe for direct contact with food. Natural pH-responsive indicators, such as red cabbage, red beet, black carrot, onion skin, ginger, and saffron, are among the available options. The aim of this study was to develop an ink containing black carrot as an indicator and apply it to smart packaging. To achieve this, the active compounds from black carrot were extracted using ethanol and distilled water. The resulting coloured mixtures were processed into solid indicator dye materials. The chemical structure of the produced indicator dye was determined using ATR-FTIR spectroscopy. The color-changing behavior of the indicator dye at different pH values was examined both visually and through UV-Vis spectroscopy. Ink formulations incorporating the produced indicator dye and starch were prepared and applied to filter paper using the screen printing method. The color changes of the resulting labels were analyzed colorimetrically using a spectrophotometer for both fresh and spoiled chicken. The ΔE (color difference) value of 29, according to ISO 12647, indicated that the two colors were visually distinct. The prints, initially pink before spoilage, turned blue-purple by the fifth day, corresponding with the spoilage of the chicken. These spectral measurement results support the conclusion that black carrot can be used as an effective indicator for poultry spoilage in smart labels.

Ethical Statement

It is declared that scientific and ethical principles were followed during the preparation of this study and that all studies used are stated in the bibliography.

Project Number

herhangi bir proje çıktısı değildir

Thanks

Prof. Dr. Arif Özcan’a makaleye olan katkılarından dolayı teşekkür ederim.

References

  • Kondakci, T., & Zhou, W. (2017). Recent applications of advanced control techniques in food industry. Food and Bioprocess Technology, 10, 522-542.
  • Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science & Technology, 19, S103-S112.
  • Gontard, N. (2000). Panorama des emballages alimentaires actifs. Les emballages actifs, coordonnatrice Gontard N., Editions TEC & DOC, Londra, 1-20.
  • Yüceer, M., & Caner, C. (2023). Gıda sanayiinde akıllı ambalajlama ve uygulamaları. Gıda ve Yem Bilimi Teknolojisi Dergisi, (30), 57-68.
  • Ozcan, A., & Arman Kandirmaz, E. (2020). Natural ink production and printability studies for smart food packaging. Color Research & Application, 45(3), 495-502.
  • Goodarzi, M. M., Moradi, M., Tajik, H., Forough, M., Ezati, P., & Kuswandi, B. (2020). Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. International Journal of Biological Macromolecules, 153, 240-247.
  • Ma, Q., & Wang, L. (2016). Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors and Actuators B: Chemical, 235, 401-407.
  • Drago, E., Campardelli, R., Pettinato, M., & Perego, P. (2020). Innovations in smart packaging concepts for food: An extensive review. Foods, 9(11), 1628.
  • U.S. Food and Drug Administration (2023). Gıda ambalaj içerikleri. https://www.fda.gov/food/food-ingredients-packaging (Erişim tarihi: 30.07.2024).
  • European Parliament, Council of the European Union (2024). Avrupa birliği gıda ile temas eden maddeler düzenlemesi. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32004R1935 (Erişim tarihi: 30.07.2024).
  • Resmi gazete (2014). Türk gıda kodeksi gıda ile temas eden madde ve malzemelere dair yönetmelik. https://www.resmigazete.gov.tr/eskiler/2018/04/20180405-2.htm (Erişim tarihi: 30.07.2024).
  • Zhao, L., Liu, Y., Zhao, L., & Wang, Y. (2022). Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. Journal of Agriculture and Food Research, 9, 100340.
  • Taherkhani, E., Moradi, M., Tajik, H., Molaei, R., & Ezati, P. (2020). Preparation of on-package halochromic freshness/spoilage nanocellulose label for the visual shelf life estimation of meat. International Journal of Biological Macromolecules, 164, 2632-2640.
  • Li, Y., Wu, K., Wang, B., & Li, X. (2021). Colorimetric indicator based on purple tomato anthocyanins and chitosan for application in intelligent packaging. International Journal of Biological Macromolecules, 174, 370-376.
  • Abu-Thabit, N., Hakeem, A. S., Mezghani, K., Ratemi, E., Elzagheid, M., Umar, Y., ... & Ahmad, A. (2020). Preparation of pH-indicative and flame-retardant nanocomposite films for smart packaging applications. Sensors, 20(19), 5462.
  • Otles, S., & Sahyar, B. Y. (2019). New Trends in Smart and Intelligent Food Packaging. In Food Packaging, CRC Press, Florida, 65-86.
  • Cheng, H., Chen, L., McClements, D. J., Yang, T., Zhang, Z., Ren, F., ... & Jin, Z. (2021). Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends in Food Science & Technology, 114, 70-82.
  • Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. International journal of biological macromolecules, 98, 348-356.
  • Zhang, X., Lu, S., & Chen, X. (2014). A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sensors and actuators B: Chemical, 198, 268-273.
  • Shukla, V., Kandeepan, G., & Vishnuraj, M. R. (2015). Development of on-package indicator sensor for real-time monitoring of buffalo meat quality during refrigeration storage. Food Analytical Methods, 8, 1591-1597.
  • Moradi, M., Tajik, H., Almasi, H., Forough, M., & Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers, 222, 115030
  • Almasi, H., Forghani, S., & Moradi, M. (2022). Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packaging and Shelf Life, 32, 100839.
  • Yeşilören Akal, G. (2019). Siyah havuç posasından antosiyanin ekstraksiyonu. Doktora tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Gıda mühendisliği Anabilimdalı, Ankara.
  • Saldamlı, İ. (2007). Gıda kimyası. Hacettepe Üniversitesi Yayınları, Ankara, 86-95.
  • Chen, S., Jia, Y., Wu, Y., & Ren, F. (2024). Anthocyanin and its Bioavailability, Health Benefits, and Applications: A Comprehensive Review. Food Reviews International, 1-24.
  • Algarra, M., Fernandes, A., Mateus, N., de Freitas, V., da Silva, J. C. E., & Casado, J. (2014). Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. Journal of Food Composition and Analysis, 33(1), 71-76.
  • Becerril, R., Nerín, C., & Silva, F. (2021). Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends in Food Science & Technology, 111, 495-505.
  • Kammerer, D., Carle, R., & Schieber, A. (2004). Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. European Food Research and Technology, 219, 479-486.
  • Smeriglio, A., Denaro, M., Barreca, D., D'Angelo, V., Germanò, M. P., & Trombetta, D. (2018). Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia, 124, 49-57.
  • Guldiken, B., Boyacioglu, D., & Capanoglu, E. (2016). Optimization of extraction of bioactive compounds from black carrot using response surface methodology (RSM). Food Analytical Methods, 9, 1876-1886.
  • Chhoden, T., Aggarwal, P., Singh, A., & Kaur, S. (2024). Valorization of black carrot pomace for the development of anthocyanin rich bio functional edible films: implications on structural, morphological and thermal properties for a sustainable approach. Journal of Food Measurement and Characterization, 1-18.
  • Klančnik, M., & Koradin, E. (2024). Extraction of Anthocyanin Dye from Staghorn Sumac Fruit in Various Solvents and Use for Pigment Printing. Coatings, 14(8), 1025.
  • Silva-Corrêa, K. M., & Stefani, R. (2024). Intelligent Films Based on Lobeira Fruit Starch for Fresh Chicken Meat Quality Monitoring. European Journal of Nutrition & Food Safety, 16(7), 222-232.
  • Çiğil, A. B. (2020, November). Biobased intelligent packaging application. In Proc 10th Int Symp on Graphic Engineering and Design, Novi-Sad, Serbia (pp. 12-14).
  • Espinosa-Acosta, G., Ramos-Jacques, A. L., Molina, G. A., Maya-Cornejo, J., Esparza, R., Hernandez-Martinez, A. R., ... & Estevez, M. (2018). Stability analysis of anthocyanins using alcoholic extracts from black carrot (Daucus carota ssp. Sativus var. Atrorubens alef.). Molecules, 23(11), 2744.
  • Erna, K. H., Felicia, W. X. L., Vonnie, J. M., Rovina, K., Yin, K. W., & Nur’Aqilah, M. N. (2022). Synthesis and physicochemical characterization of polymer film-based anthocyanin and starch. Biosensors, 12(4), 211.
  • Özünlü, O., & Ergezer, H. (2022). Development of novel paper‐based colorimetric indicator labels for monitoring shelf life of chicken breast fillets. Journal of Food Processing and Preservation, 46(11), e17013.

Doğal İçerikli, Yenilebilir Kolorimetrik Akıllı Etiket Geliştirilmesi

Year 2025, Volume: 12 Issue: 2, 600 - 608, 30.11.2025
https://doi.org/10.35193/bseufbd.1524797

Abstract

Akıllı etiketler, gıda bozulması sırasında salınan gazlar ve ortam pH değişimlerine tepki veren kimyasal maddeler kullanılarak üretilmektedir. Gıdalar bozulduğunda, yapılarından farklı gazlar salınır ve ortam pH değeri değişir. Farklı pH değerlerine tepki vererek renk değiştiren (kolorimetrik) indikatör malzemelerin kullanılmasıyla akıllı etiketler tasarlanabilir. Kullanılan indikatörün doğal kaynaklı olması veya sağlığa zararsız olması, gıda ile doğrudan temas açısından önemli bir husustur. Doğal içerikli ve farklı pH değerlerinde tepki veren indikatörler arasında kırmızı lahana, kırmızı pancar, siyah havuç, soğan kabuğu, zencefil ve safran yer almaktadır. Bu çalışmanın amacı, siyah havuç kullanarak bir indikatör mürekkep üretmek ve bu mürekkebi akıllı ambalaj sistemlerinde kullanmaktır. Bu doğrultuda, siyah havucun etken maddesi etil alkol ve saf su ile ekstrakte edilmiştir. Elde edilen renkli karışımlardan katı indikatör boyar maddeleri üretilmiştir. Üretilen indikatör boyar maddenin kimyasal yapısı ATR-FTIR spektrum analizleri ile belirlenmiştir. Üretilen indikatör boyar maddelerin farklı pH değerlerinde gösterdiği renk değişimi, hem görsel olarak hem de UV-Vis spektroskopisi ile incelenmiştir. Ayrıca, üretilen indikatör boyar maddeler ve nişasta içeren mürekkep formülasyonları hazırlanarak, süzgeç kağıdı üzerine serigrafi baskı yöntemiyle uygulanmıştır. Elde edilen etiketlerin taze ve bozulmuş tavuk ile yaptığı renk değişimleri, kolorimetrik olarak spektrofotometre ile analiz edilmiştir. ISO 12647 standardına göre, ΔE (renk farkı) değerinin 29 olduğu belirlenmiş ve bu, iki rengin görsel olarak farklı olduğunu göstermektedir. Bozulmadan önce pembe olan baskılar, tavuğun bozulması ile birlikte beşinci günün sonunda mavi-mor renge dönüşmüş, bu da spektrofotometrik ölçüm sonuçlarıyla desteklenmiştir. Sonuç olarak, siyah havuç boyar maddesinin, tavuk bozulmasını izlemek amacıyla akıllı etiketlerde kullanılabileceği tespit edilmiştir.

Ethical Statement

Bu çalışmanın hazırlanma sürecinde bilimsel ve etik ilkelere uyulduğu ve yararlanılan tüm çalışmaların kaynakçada belirtildiği beyan olunur.

Supporting Institution

herhangi bir kurum tarafından desteklenmemiştir

Project Number

herhangi bir proje çıktısı değildir

Thanks

Prof. Dr. Arif Özcan’a makaleye olan katkılarından dolayı teşekkür ederim.

References

  • Kondakci, T., & Zhou, W. (2017). Recent applications of advanced control techniques in food industry. Food and Bioprocess Technology, 10, 522-542.
  • Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science & Technology, 19, S103-S112.
  • Gontard, N. (2000). Panorama des emballages alimentaires actifs. Les emballages actifs, coordonnatrice Gontard N., Editions TEC & DOC, Londra, 1-20.
  • Yüceer, M., & Caner, C. (2023). Gıda sanayiinde akıllı ambalajlama ve uygulamaları. Gıda ve Yem Bilimi Teknolojisi Dergisi, (30), 57-68.
  • Ozcan, A., & Arman Kandirmaz, E. (2020). Natural ink production and printability studies for smart food packaging. Color Research & Application, 45(3), 495-502.
  • Goodarzi, M. M., Moradi, M., Tajik, H., Forough, M., Ezati, P., & Kuswandi, B. (2020). Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. International Journal of Biological Macromolecules, 153, 240-247.
  • Ma, Q., & Wang, L. (2016). Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors and Actuators B: Chemical, 235, 401-407.
  • Drago, E., Campardelli, R., Pettinato, M., & Perego, P. (2020). Innovations in smart packaging concepts for food: An extensive review. Foods, 9(11), 1628.
  • U.S. Food and Drug Administration (2023). Gıda ambalaj içerikleri. https://www.fda.gov/food/food-ingredients-packaging (Erişim tarihi: 30.07.2024).
  • European Parliament, Council of the European Union (2024). Avrupa birliği gıda ile temas eden maddeler düzenlemesi. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32004R1935 (Erişim tarihi: 30.07.2024).
  • Resmi gazete (2014). Türk gıda kodeksi gıda ile temas eden madde ve malzemelere dair yönetmelik. https://www.resmigazete.gov.tr/eskiler/2018/04/20180405-2.htm (Erişim tarihi: 30.07.2024).
  • Zhao, L., Liu, Y., Zhao, L., & Wang, Y. (2022). Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. Journal of Agriculture and Food Research, 9, 100340.
  • Taherkhani, E., Moradi, M., Tajik, H., Molaei, R., & Ezati, P. (2020). Preparation of on-package halochromic freshness/spoilage nanocellulose label for the visual shelf life estimation of meat. International Journal of Biological Macromolecules, 164, 2632-2640.
  • Li, Y., Wu, K., Wang, B., & Li, X. (2021). Colorimetric indicator based on purple tomato anthocyanins and chitosan for application in intelligent packaging. International Journal of Biological Macromolecules, 174, 370-376.
  • Abu-Thabit, N., Hakeem, A. S., Mezghani, K., Ratemi, E., Elzagheid, M., Umar, Y., ... & Ahmad, A. (2020). Preparation of pH-indicative and flame-retardant nanocomposite films for smart packaging applications. Sensors, 20(19), 5462.
  • Otles, S., & Sahyar, B. Y. (2019). New Trends in Smart and Intelligent Food Packaging. In Food Packaging, CRC Press, Florida, 65-86.
  • Cheng, H., Chen, L., McClements, D. J., Yang, T., Zhang, Z., Ren, F., ... & Jin, Z. (2021). Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends in Food Science & Technology, 114, 70-82.
  • Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. International journal of biological macromolecules, 98, 348-356.
  • Zhang, X., Lu, S., & Chen, X. (2014). A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sensors and actuators B: Chemical, 198, 268-273.
  • Shukla, V., Kandeepan, G., & Vishnuraj, M. R. (2015). Development of on-package indicator sensor for real-time monitoring of buffalo meat quality during refrigeration storage. Food Analytical Methods, 8, 1591-1597.
  • Moradi, M., Tajik, H., Almasi, H., Forough, M., & Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers, 222, 115030
  • Almasi, H., Forghani, S., & Moradi, M. (2022). Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packaging and Shelf Life, 32, 100839.
  • Yeşilören Akal, G. (2019). Siyah havuç posasından antosiyanin ekstraksiyonu. Doktora tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Gıda mühendisliği Anabilimdalı, Ankara.
  • Saldamlı, İ. (2007). Gıda kimyası. Hacettepe Üniversitesi Yayınları, Ankara, 86-95.
  • Chen, S., Jia, Y., Wu, Y., & Ren, F. (2024). Anthocyanin and its Bioavailability, Health Benefits, and Applications: A Comprehensive Review. Food Reviews International, 1-24.
  • Algarra, M., Fernandes, A., Mateus, N., de Freitas, V., da Silva, J. C. E., & Casado, J. (2014). Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. Journal of Food Composition and Analysis, 33(1), 71-76.
  • Becerril, R., Nerín, C., & Silva, F. (2021). Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends in Food Science & Technology, 111, 495-505.
  • Kammerer, D., Carle, R., & Schieber, A. (2004). Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. European Food Research and Technology, 219, 479-486.
  • Smeriglio, A., Denaro, M., Barreca, D., D'Angelo, V., Germanò, M. P., & Trombetta, D. (2018). Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia, 124, 49-57.
  • Guldiken, B., Boyacioglu, D., & Capanoglu, E. (2016). Optimization of extraction of bioactive compounds from black carrot using response surface methodology (RSM). Food Analytical Methods, 9, 1876-1886.
  • Chhoden, T., Aggarwal, P., Singh, A., & Kaur, S. (2024). Valorization of black carrot pomace for the development of anthocyanin rich bio functional edible films: implications on structural, morphological and thermal properties for a sustainable approach. Journal of Food Measurement and Characterization, 1-18.
  • Klančnik, M., & Koradin, E. (2024). Extraction of Anthocyanin Dye from Staghorn Sumac Fruit in Various Solvents and Use for Pigment Printing. Coatings, 14(8), 1025.
  • Silva-Corrêa, K. M., & Stefani, R. (2024). Intelligent Films Based on Lobeira Fruit Starch for Fresh Chicken Meat Quality Monitoring. European Journal of Nutrition & Food Safety, 16(7), 222-232.
  • Çiğil, A. B. (2020, November). Biobased intelligent packaging application. In Proc 10th Int Symp on Graphic Engineering and Design, Novi-Sad, Serbia (pp. 12-14).
  • Espinosa-Acosta, G., Ramos-Jacques, A. L., Molina, G. A., Maya-Cornejo, J., Esparza, R., Hernandez-Martinez, A. R., ... & Estevez, M. (2018). Stability analysis of anthocyanins using alcoholic extracts from black carrot (Daucus carota ssp. Sativus var. Atrorubens alef.). Molecules, 23(11), 2744.
  • Erna, K. H., Felicia, W. X. L., Vonnie, J. M., Rovina, K., Yin, K. W., & Nur’Aqilah, M. N. (2022). Synthesis and physicochemical characterization of polymer film-based anthocyanin and starch. Biosensors, 12(4), 211.
  • Özünlü, O., & Ergezer, H. (2022). Development of novel paper‐based colorimetric indicator labels for monitoring shelf life of chicken breast fillets. Journal of Food Processing and Preservation, 46(11), e17013.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Physical Properties of Materials
Journal Section Research Article
Authors

Emine Arman Kandırmaz 0000-0002-4089-6660

Project Number herhangi bir proje çıktısı değildir
Publication Date November 30, 2025
Submission Date July 30, 2024
Acceptance Date January 16, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Arman Kandırmaz, E. (2025). Doğal İçerikli, Yenilebilir Kolorimetrik Akıllı Etiket Geliştirilmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(2), 600-608. https://doi.org/10.35193/bseufbd.1524797