Research Article
BibTex RIS Cite

Hidrofobik Perlit ile Üretilen Farklı Harç Tiplerinin Fiziksel ve Mekanik Özellikleri

Year 2025, Volume: 12 Issue: 2, 621 - 629, 30.11.2025
https://doi.org/10.35193/bseufbd.1553666

Abstract

Bu çalışma, genleştirilmiş perlitin hidrofobik özelliklerini, onu hidrofobik hale getirerek artırmayı amaçlayan yenilikçi bir yaklaşımı araştırmaktadır. İlk aşamada, genleştirilmiş perlitin hidrofobik özelliklere sahip sıvı bir kimyasal madde ile birlikte öğütülmesiyle hidrofobik perlit elde edilmiştir. Bu hidrofobik perlit, çeşitli harçlar üretmek için farklı su oranlarında çimento ve alçı ile karıştırılmıştır. Harçların fiziksel özelliklerinden birim ağırlık, ağırlıkça su emme oranı, kapiler su emme oranı ve ultrases geçiş hızı özellikleri incelenirken, mekanik özelliklerinden basınç dayanımı araştırılmıştır. Su emilim testi, ultrasonik iletim hızı, birim ağırlık ve basınç dayanımı gibi kriterler üzerinde yapılan testler, hidrofobik perlit ile üretilen harçların, geleneksel harçlara kıyasla önemli ölçüde daha düşük su emilim oranları ve iyileştirilmiş mekanik özellikler sergilediğini ortaya koymuştur. Çalışmanın bulguları, hidrofobik perlitin suya dayanıklı ve performansı artırılmış yapı malzemelerinin üretiminde etkili bir katkıda bulunduğunu göstermektedir. Bu yöntem, inşaat ve yapı endüstrilerinde, hidrofobik özellikleri artırılmış harçlar ve diğer yapı malzemelerinin geliştirilmesi için potansiyel uygulamalar sunmaktadır.

References

  • Di Mundo, R., Labianca, C., Carbone, G., & Notarnicola, M. (2020). Recent advances in hydrophobic and icephobic surface treatments of concrete. Coatings, 10(5), 449.
  • Sharma, N., & Sharma, P. (2021). Effect of hydrophobic agent in cement and concrete: A Review. In IOP conference series: materials science and engineering, 1116(1), 012175.
  • Zhao, J., Gao, X., Chen, S., Lin, H., Li, Z., & Lin, X. (2022). Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review. Composites Part B: Engineering, 243, 110104.
  • Slowik, V., & Saouma, V. E. (2000). Water pressure in propagating concrete cracks. Journal of Structural Engineering, 126(2), 235-242.
  • Zhou, C., Zhu, Z., Zhu, A., Zhou, L., Fan, Y., & Lang, L. (2019). Deterioration of mode II fracture toughness, compressive strength and elastic modulus of concrete under the environment of acid rain and cyclic wetting-drying. Construction and Building Materials, 228, 116809.
  • Ahmad, D., Van Den Boogaert, I., Miller, J., Presswell, R., & Jouhara, H. (2018). Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(22), 2686-2725.
  • Cojocaru, A., Isopescu, D. N., & Maxineasa, S. G. (2023). Perlite concrete: a review. In IOP Conference Series: Materials Science and Engineering, 1283(1), 012003.
  • Jia, G., Li, Z., Liu, P., & Jing, Q. (2018). Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material. Journal of Non-Crystalline Solids, 482, 192-202.
  • Benjeddou, O., Ravindran, G., & Abdelzaher, M. A. (2023). Thermal and acoustic features of lightweight concrete based on marble wastes and expanded perlite aggregate. Buildings, 13(4), 992.
  • Binici, H., & Kalaycı, F. (2015). Production of perlite based thermal insulating material. International Journal of Academic Research and Reflection, 3(7).
  • Singh, M., & Garg, M. (1991). Perlite-based building materials—a review of current applications. Construction and Building Materials, 5(2), 75-81.
  • Altuncı, Y. T., Öcal, C., Saplıoğlu, K., İnce, H. H., & Cevikbas, M. (2021). Determination of Performance Characteristics of Screed Mortar with Expanded Glass Aggregate and Expanded Perlite Aggregate. El-Cezerî Journal of Science and Engineering, 8(1), 11-20.
  • Altuncı, Y. T., Öcal, C., Saplıoğlu, K., İnce, H. H., & Cevikbas, M. (2021). Investigation of Physical Properties of Screed Concretes Produced by Substituting Expanded Glass Aggregate and Expanded Perlite Aggregate. Journal of Technical Sciences, 11(2), 8-13.
  • Yan, Q., Wang, H., Luo, J., Lin, Y., & Yang, Y. (2022). Composite Hydrophobic Modification of Expanded Perlite. ACI Materials Journal, 119(1), 71-78.
  • Bian, Y., Wang, K., Wang, J., Yu, Y., Liu, M., & Lv, Y. (2021). Preparation and properties of capric acid: Stearic acid/hydrophobic expanded perlite-aerogel composite phase change materials. Renewable Energy, 179, 1027-1035.
  • Myronyuk, O., Baklan, D., Zilong, J., & Sokolova, L. (2022). Obtaining water-repellent coatings based on expanded perlite materials. Materials Today: Proceedings, 62, 7720-7725.
  • Vyšvařil, M., Pavlíková, M., Záleská, M., Pivák, A., Žižlavský, T., Rovnaníková, P., & Pavlík, Z. (2020). Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Construction and Building Materials, 263, 120617.
  • Yuan, Q., Zhong, F., Zuo, S., Xie, Z., Xue, K., & Yao, H. (2024). Understanding the water transport behaviors of hydrophobic cement mortar by paraffin modification. Construction and Building Materials, 435, 136845.

Physical and Mechanical Properties of Different Types of Mortars Produced with Hydrophobic Perlite

Year 2025, Volume: 12 Issue: 2, 621 - 629, 30.11.2025
https://doi.org/10.35193/bseufbd.1553666

Abstract

This study contributes to the limited research in this field by enabling hydrophobic perlite to be used more efficiently in cement and gypsum based lightweight composites by reducing water absorption and explores an innovative approach to increase the hydrophobic properties of expanded perlite by making it hydrophobic. In the first stage, hydrophobic perlite was obtained by grinding expanded perlite together with a liquid chemical agent with hydrophobic properties. This hydrophobic perlite was mixed with cement and gypsum at different water ratios to produce various mortars. The physical properties of the mortars were analyzed in terms of unit weight, water absorption rate by weight, capillary water absorption rate and ultrasonic pulse velocity, while the compressive strength was investigated in terms of mechanical properties. Tests on criteria, such as water absorption test, ultrasonic transmission rate, unit weight and compressive strength revealed that mortars produced with hydrophobic perlite exhibited significantly lower water absorption rates and improved mechanical properties compared to conventional mortars. The findings of the study indicate that hydrophobic perlite is an effective contributor to the production of water-resistant and performance-enhanced building materials. This method offers potential applications in the construction and building industries for the development of mortars and other building materials with enhanced hydrophobic properties.

References

  • Di Mundo, R., Labianca, C., Carbone, G., & Notarnicola, M. (2020). Recent advances in hydrophobic and icephobic surface treatments of concrete. Coatings, 10(5), 449.
  • Sharma, N., & Sharma, P. (2021). Effect of hydrophobic agent in cement and concrete: A Review. In IOP conference series: materials science and engineering, 1116(1), 012175.
  • Zhao, J., Gao, X., Chen, S., Lin, H., Li, Z., & Lin, X. (2022). Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review. Composites Part B: Engineering, 243, 110104.
  • Slowik, V., & Saouma, V. E. (2000). Water pressure in propagating concrete cracks. Journal of Structural Engineering, 126(2), 235-242.
  • Zhou, C., Zhu, Z., Zhu, A., Zhou, L., Fan, Y., & Lang, L. (2019). Deterioration of mode II fracture toughness, compressive strength and elastic modulus of concrete under the environment of acid rain and cyclic wetting-drying. Construction and Building Materials, 228, 116809.
  • Ahmad, D., Van Den Boogaert, I., Miller, J., Presswell, R., & Jouhara, H. (2018). Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(22), 2686-2725.
  • Cojocaru, A., Isopescu, D. N., & Maxineasa, S. G. (2023). Perlite concrete: a review. In IOP Conference Series: Materials Science and Engineering, 1283(1), 012003.
  • Jia, G., Li, Z., Liu, P., & Jing, Q. (2018). Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material. Journal of Non-Crystalline Solids, 482, 192-202.
  • Benjeddou, O., Ravindran, G., & Abdelzaher, M. A. (2023). Thermal and acoustic features of lightweight concrete based on marble wastes and expanded perlite aggregate. Buildings, 13(4), 992.
  • Binici, H., & Kalaycı, F. (2015). Production of perlite based thermal insulating material. International Journal of Academic Research and Reflection, 3(7).
  • Singh, M., & Garg, M. (1991). Perlite-based building materials—a review of current applications. Construction and Building Materials, 5(2), 75-81.
  • Altuncı, Y. T., Öcal, C., Saplıoğlu, K., İnce, H. H., & Cevikbas, M. (2021). Determination of Performance Characteristics of Screed Mortar with Expanded Glass Aggregate and Expanded Perlite Aggregate. El-Cezerî Journal of Science and Engineering, 8(1), 11-20.
  • Altuncı, Y. T., Öcal, C., Saplıoğlu, K., İnce, H. H., & Cevikbas, M. (2021). Investigation of Physical Properties of Screed Concretes Produced by Substituting Expanded Glass Aggregate and Expanded Perlite Aggregate. Journal of Technical Sciences, 11(2), 8-13.
  • Yan, Q., Wang, H., Luo, J., Lin, Y., & Yang, Y. (2022). Composite Hydrophobic Modification of Expanded Perlite. ACI Materials Journal, 119(1), 71-78.
  • Bian, Y., Wang, K., Wang, J., Yu, Y., Liu, M., & Lv, Y. (2021). Preparation and properties of capric acid: Stearic acid/hydrophobic expanded perlite-aerogel composite phase change materials. Renewable Energy, 179, 1027-1035.
  • Myronyuk, O., Baklan, D., Zilong, J., & Sokolova, L. (2022). Obtaining water-repellent coatings based on expanded perlite materials. Materials Today: Proceedings, 62, 7720-7725.
  • Vyšvařil, M., Pavlíková, M., Záleská, M., Pivák, A., Žižlavský, T., Rovnaníková, P., & Pavlík, Z. (2020). Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Construction and Building Materials, 263, 120617.
  • Yuan, Q., Zhong, F., Zuo, S., Xie, Z., Xue, K., & Yao, H. (2024). Understanding the water transport behaviors of hydrophobic cement mortar by paraffin modification. Construction and Building Materials, 435, 136845.
There are 18 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Article
Authors

Serdal Ünal 0000-0002-5200-9969

Hasan Serkan Gökçen 0000-0001-5093-6796

Mehmet Canbaz 0000-0002-0175-6155

Publication Date November 30, 2025
Submission Date September 20, 2024
Acceptance Date March 5, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Ünal, S., Gökçen, H. S., & Canbaz, M. (2025). Physical and Mechanical Properties of Different Types of Mortars Produced with Hydrophobic Perlite. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(2), 621-629. https://doi.org/10.35193/bseufbd.1553666