Research Article
BibTex RIS Cite

Investigation of Radiation Shielding Performance in Borosilicate Ceramic Glass Samples

Year 2025, Volume: 12 Issue: 2, 555 - 567, 30.11.2025
https://doi.org/10.35193/bseufbd.1666031

Abstract

Ceramic glass is a multipurpose solid-state material that merges the high thermal stability, mechanical strength, and chemical durability of ceramics with the transparency, light transmission, and aesthetic benefits of glass. Because of these qualities, ceramic glass can be used in both industrial and scientific settings, especially when radiation protection, high-temperature endurance, heat resistance to thermal fluctuations, and optical clarity are required. Radiation shielding properties of five distinct ceramic glass samples with the chemical formula B2O3-ZnO-K2CO3-PbO (abbreviated as BZKP) were comprehensively assessed in this study. The radiation protection parameters of B2O3-ZnO-K2CO3-PbO glass-ceramic systems, including gamma-ray kerma coefficients (kγ), half-value layer (HVL), radiation shielding efficiency (RPE), mean free path (MFP), fast neutron macroscopic cross section ΣR (cm−1), and effective atomic number (Zeff), were theoretically examined using Monte Carlo EGS4 and WinXCOM software. The radiation shielding characteristics at 20 discrete photon energies, ranging from 0.05 MeV to 2 MeV, were theoretically calculated using the EGS4 simulation code and subsequently compared with data obtained from the XCOM program. The results of this study provide solid and valuable information regarding the improved design of high-performance ceramic glasses for radiation shielding applications. To create effective shielding solutions, a comprehensive understanding of the interactions between various materials and ionizing radiation, such as neutrons and gamma rays, is essential. By combining these discoveries, scientists can create new shielding materials that make the most of materials in these critical areas while improving radiation protection.

References

  • Stookey, S. D. (1950). Photosensitive Opal Glass,’’ U.S. Patent 2515941.
  • Stookey, S. D. (1959). Catalyzed crystallization of glass in theory and practice. Industrial & Engineering Chemistry, 51(7), 805-808.
  • Stookey, S. D. (1960). Method of Making Ceramics and Product Thereof,’’ U. S.Patent 2920971.
  • Stookey, S. D. & Maurer R. D. (1962). Progress in Ceramic Science, Pergamon Press, New York, (2), 78.
  • Sakamoto, A., & Yamamoto, S. (2010). Glass–ceramics: engineering principles and applications. International Journal of Applied Glass Science, 1(3), 237-247.
  • Musgraves, J. D., Hu, J., & Calvez, L. (Eds.). (2019). Springer handbook of glass. Springer Nature.
  • Mhareb, M. H. A., Alajerami, Y. S. M., Sayyed, M. I., Mahmoud, K. A., Ghrib, T., Hamad, M. K. & Almessiere, M. A. (2022). Morphological, optical, structural, mechanical, and radiation-shielding properties of borosilicate glass–ceramic system. Ceramics International, 48(23), 35227-35236.
  • Mhareb, M. H. A. (2023). Optical, Structural, Radiation shielding, and Mechanical properties for borosilicate glass and glass ceramics doped with Gd2O3. Ceramics International, 49(22), 36950-36961.
  • Fathy, I. N., El-Sayed, A. A., Elfakharany, M. E., Mahmoud, A. A., Abouelnour, M. A., Mahmoud, A. S. & Nabil, I. M. (2024). Enhancing mechanical properties and radiation shielding of high-strength concrete with bulk lead oxide and granodiorite. Nuclear Engineering and Design, 429, 113626.
  • AbuAlRoos, N. J., Amin, N. A. B. & Zainon, R. (2019). Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry, 165, 108439.
  • Pacheco, M. H., Gibin, M. S., Silva, M. A., Montagnini, G., Viscovini, R. C., Steimacher, A. & Muniz, R. F. (2023). BaO–reinforced SiO2–Na2O–Ca (O/F2)–Al2O3 glasses for radiation safety: on the physical, optical, structural and radiation shielding properties. Journal of Alloys and Compounds, 960, 171019.
  • Al-Buriahi, M. S., Kurtulus, R., Eke, C., Alomairy, S., & Olarinoye, I. O. (2024). An insight into advanced glass systems for radiation shielding applications: A review on different modifiers and heavy metal oxides-based glasses. Heliyon, 10(22).
  • Alzahrani, J. S., Echeweozo, E. O., Alrowaili, Z. A., Sriwunkum, C., Kırkbınar, M., Çaliskan, F. & Al-Buriahi, M. S. (2024). Influence of Fe2O3 on synthesis, structure, hardness, and radiation shielding properties of Apatite–Wollastonite (AW) glass ceramics for bone implantation and shielding applications. Ceramics International, 50(18), 32884-32892.
  • Katubi, K. M., Echeweozo, E. O., Eke, C., İbrahimoğlu, E. & Al-Buriahi, M. S. (2025). Synthesis, microstructure and radiation protection properties of B2O3–ZnO–K2CO3–PbO ceramic glass system: experimental and theoretical assessment. Journal of Materials Science: Materials in Electronics, 36(5), 339.
  • Baltaş, H., Çelik, Ş., Çevik, U., Yanmaz, E., (2007). Measurement of mass attenuation coefficients and effective atomic numbers for MgB2 superconductor using X-ray energies. Radiat. Meas. 42, 55–60.
  • Berger, M. J. & Hubbell, J. H. (1999). XCOM: Photon cross-sections on a personnel computer (version 1.2). NBSIR85-3597, National Bureau of Standarts, Gaithersburg, MD, USA, for version, 3.
  • Gerward, L., Guilbert, N., Jensen, K.B., Levring, H., (2001). X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 60, 23–24.
  • Tekin, H.O., Singh, V.P., Manici, T. (2017). Effects of micro-sized and nano-sized WO 3 on mass attenauation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot. 121, 122–125.
  • Baltas, H. (2020). Evaluation of gamma attenuation parameters and kerma coefficients of YBaCuO and BiPbSrCaCuO superconductors using EGS4 code. Radiation Physics and Chemistry, 166, 108517.
  • Kaya, S., Çeli̇k, N. & Bayram, T. (2022). Effect of front, lateral and back dead layer thicknesses of a HPGe detector on full energy peak efficiency. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1029, 166401.
  • El-Khayatt, A.M., Vega-Carrillo, H.R. (2015). Photon and neutron kerma coefficients for polymer gel dosimeters. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 792, 6–10.
  • El-Khayatt, A.M. (2017). Semi-empirical determination of gamma-ray kerma coefficients for materials of shielding and dosimetry from mass attenuation coefficients. Prog. Nucl. Energy 98, 277–284.
  • Kaya, S., Çelik, N., Gök, A. & Çevik, U. (2023). Effect of detector crystal size on Compton suppression factors. Radiation Effects and Defects in Solids, 178(11-12), 1449-1462.
  • Nelson, W.R., Rogers, D.W.O., Hirayama, H. (1985). The EGS4 code system.
  • Gasparro, J., Hult, M., Johnston, P.N., Tagziria, H. (2008). Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 594, 196–201
  • Kaya, S. (2023). Calculation of the effects of silver (Ag) dopant on radiation shielding efficiency of BiPbSrCaCuO superconductor ceramics using EGS4 code. Applied Sciences, 13(14), 8358.
  • Kaya, S. (2023). Calculation of radiation shielding parameters of YBa2Cu3O7 and Y3Ba5Cu8O18 superconductors for the energies from 122 to 1332 keV using EGS4 code. Optical Materials, 144, 114366.
  • Kumar, A., Gaikwad, D.K., Obaid, S.S., Tekin, H.O., Agar, O., Sayyed, M.I., (2020). Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+ x) PbO10WO3 10Na2O− 10MgO–(40-x) B2O3 glasses. Prog. Nucl. Energy 119, 103047
  • Celik, N., Cevik, U. (2010). Monte Carlo determination of water concentration effect on gamma-ray detection efficiency in soil samples. Appl. Radiat. Isot. 68, 1150–1153
  • Gerward, L., Guilbert, N., Jensen, K.B., Leving, H. (2004). WinXCom–a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654
  • Tekin, H.O., Altunsoy, E.E., Kavaz, E., Sayyed, M.I., Agar, O., Kamislioglu, M. (2019). Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys. 12, 1457–1464.
  • Obaid, S.S., Sayyed, M.I., Gaikwad, D.K., Pawar, P.P. (2018). Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94.
  • Gaikwad, D.K., Sayyed, M.I., Botewad, S.N., Obaid, S.S., Khattari, Z.Y., Gawai, U.P., Afaneh, F., Shirshat, M.D., Pawar, P.P. (2019). Physical, structural, optical investigation and shielding featuresof tungsten bismuth tellurite-based glasses. J. Non. Cryst. Solids 503, 158–168.
  • Sayyed, M. I., Akman, F., Kumar, A., & Kaçal, M. R. (2018). Evaluation of radioprotection properties of some selected ceramic samples. Results in Physics, 11, 1100-1104.
  • Thomas, D.J. (2012). ICRU report 85: fundamental quantities and units for ionizing radiation.
  • Attix, F.H. (2008). Introduction to Radiological Physics and Radiation Domisetry, John Wiley & Sons, U.S.A.
  • Abdel-Rahman, W., & Podgorsak, E. B. (2010). Energy transfer and energy absorption in photon interactions with matter revisited: A step-by-step illustrated approach. Radiation Physics and Chemistry, 79(5), 552-566.
  • El-Agawany, F. I., Kavaz, E., Perişanoğlu, U., Al-Buriahi, M. & Rammah, Y. S. (2019). Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems. Applied Physics A, 125, 1-12.
  • Yılmaz, E., Baltas, H., Kırıs, E., Ustabas, I., Cevik, U., El-Khayatt, A.M. (2011). Gamma ray and neutron shielding properties of some concrete materials. Ann. Nucl. Energy 38, 2204–2212.
  • Sirin, M. (2020). The effect of titanium (Ti) additive on radiation shielding efficiency of Al25Zn alloy. Progress in nuclear energy, 128, 103470.

Borosilikat Seramik Cam Numunelerinde Radyasyon Kalkanlama Performansının Araştırılması

Year 2025, Volume: 12 Issue: 2, 555 - 567, 30.11.2025
https://doi.org/10.35193/bseufbd.1666031

Abstract

Çok amaçlı katı hal malzemesi olan seramik cam, seramiğin yüksek termal kararlılığını camın şeffaflığıyla birleştirir. Seramiklerin yüksek sıcaklık direncini, mekanik mukavemetini ve kimyasal dayanıklılığını camın ışık geçirgenliği ve estetik avantajlarıyla birleştirir. Bu nitelikleri nedeniyle seramik cam, özellikle radyasyon koruması, yüksek sıcaklık dayanıklılığı, termal dalgalanmalara karşı ısı direnci ve optik berraklık gerektiğinde hem endüstriyel hem de bilimsel ortamlarda kullanılabilir. Bu çalışmada, kimyasal formülü B2O3-ZnO-K2CO3-PbO (kısaltması BZKP) olan beş ayrı seramik camın gama ışını kalkanlama özellikleri kapsamlı bir şekilde değerlendirilmiştir. B2O3-ZnO-K2CO3-PbO cam-seramik sistemlerinin radyasyon koruma parametreleri, yarı değer tabakası (HVL), gama ışını kerma katsayıları (kγ), radyasyon kalkanlama verimliliği (RPE), ortalama serbest yol (MFP), hızlı nötron makroskobik kesit alanı ΣR (cm−1) ve etkin atom numarası (Zeff) dâhil olmak üzere, Monte Carlo EGS4 ve WinXCOM yazılımları kullanılarak teorik olarak incelenmiştir. 0,05 MeV ile 2 MeV arasında değişen toplam 20 enerji için radyasyon kalkanlama özellikleri, EGS4 hesaplama kodu kullanılarak hesaplanmış ve XCOM tarafından üretilen verilerle karşılaştırılmıştır. Bu çalışmanın sonuçları, radyasyon kalkanlama uygulamaları için yüksek performanslı seramik camların geliştirilmiş tasarımı ile ilgili sağlam ve değerli bilgiler sunmaktadır. Etkili kalkanlama çözümleri oluşturmak için, nötronlar ve gama ışınları gibi çeşitli malzemeler ile iyonlaştırıcı radyasyon arasındaki etkileşimlerin kapsamlı bir şekilde anlaşılması esastır. Bilim insanları bu keşifleri bir araya getirerek, radyasyon korumasını iyileştirirken bu kritik alanlardaki malzemelerden en iyi şekilde yararlanan yeni koruyucu malzemeler üretebilirler.

References

  • Stookey, S. D. (1950). Photosensitive Opal Glass,’’ U.S. Patent 2515941.
  • Stookey, S. D. (1959). Catalyzed crystallization of glass in theory and practice. Industrial & Engineering Chemistry, 51(7), 805-808.
  • Stookey, S. D. (1960). Method of Making Ceramics and Product Thereof,’’ U. S.Patent 2920971.
  • Stookey, S. D. & Maurer R. D. (1962). Progress in Ceramic Science, Pergamon Press, New York, (2), 78.
  • Sakamoto, A., & Yamamoto, S. (2010). Glass–ceramics: engineering principles and applications. International Journal of Applied Glass Science, 1(3), 237-247.
  • Musgraves, J. D., Hu, J., & Calvez, L. (Eds.). (2019). Springer handbook of glass. Springer Nature.
  • Mhareb, M. H. A., Alajerami, Y. S. M., Sayyed, M. I., Mahmoud, K. A., Ghrib, T., Hamad, M. K. & Almessiere, M. A. (2022). Morphological, optical, structural, mechanical, and radiation-shielding properties of borosilicate glass–ceramic system. Ceramics International, 48(23), 35227-35236.
  • Mhareb, M. H. A. (2023). Optical, Structural, Radiation shielding, and Mechanical properties for borosilicate glass and glass ceramics doped with Gd2O3. Ceramics International, 49(22), 36950-36961.
  • Fathy, I. N., El-Sayed, A. A., Elfakharany, M. E., Mahmoud, A. A., Abouelnour, M. A., Mahmoud, A. S. & Nabil, I. M. (2024). Enhancing mechanical properties and radiation shielding of high-strength concrete with bulk lead oxide and granodiorite. Nuclear Engineering and Design, 429, 113626.
  • AbuAlRoos, N. J., Amin, N. A. B. & Zainon, R. (2019). Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry, 165, 108439.
  • Pacheco, M. H., Gibin, M. S., Silva, M. A., Montagnini, G., Viscovini, R. C., Steimacher, A. & Muniz, R. F. (2023). BaO–reinforced SiO2–Na2O–Ca (O/F2)–Al2O3 glasses for radiation safety: on the physical, optical, structural and radiation shielding properties. Journal of Alloys and Compounds, 960, 171019.
  • Al-Buriahi, M. S., Kurtulus, R., Eke, C., Alomairy, S., & Olarinoye, I. O. (2024). An insight into advanced glass systems for radiation shielding applications: A review on different modifiers and heavy metal oxides-based glasses. Heliyon, 10(22).
  • Alzahrani, J. S., Echeweozo, E. O., Alrowaili, Z. A., Sriwunkum, C., Kırkbınar, M., Çaliskan, F. & Al-Buriahi, M. S. (2024). Influence of Fe2O3 on synthesis, structure, hardness, and radiation shielding properties of Apatite–Wollastonite (AW) glass ceramics for bone implantation and shielding applications. Ceramics International, 50(18), 32884-32892.
  • Katubi, K. M., Echeweozo, E. O., Eke, C., İbrahimoğlu, E. & Al-Buriahi, M. S. (2025). Synthesis, microstructure and radiation protection properties of B2O3–ZnO–K2CO3–PbO ceramic glass system: experimental and theoretical assessment. Journal of Materials Science: Materials in Electronics, 36(5), 339.
  • Baltaş, H., Çelik, Ş., Çevik, U., Yanmaz, E., (2007). Measurement of mass attenuation coefficients and effective atomic numbers for MgB2 superconductor using X-ray energies. Radiat. Meas. 42, 55–60.
  • Berger, M. J. & Hubbell, J. H. (1999). XCOM: Photon cross-sections on a personnel computer (version 1.2). NBSIR85-3597, National Bureau of Standarts, Gaithersburg, MD, USA, for version, 3.
  • Gerward, L., Guilbert, N., Jensen, K.B., Levring, H., (2001). X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 60, 23–24.
  • Tekin, H.O., Singh, V.P., Manici, T. (2017). Effects of micro-sized and nano-sized WO 3 on mass attenauation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot. 121, 122–125.
  • Baltas, H. (2020). Evaluation of gamma attenuation parameters and kerma coefficients of YBaCuO and BiPbSrCaCuO superconductors using EGS4 code. Radiation Physics and Chemistry, 166, 108517.
  • Kaya, S., Çeli̇k, N. & Bayram, T. (2022). Effect of front, lateral and back dead layer thicknesses of a HPGe detector on full energy peak efficiency. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1029, 166401.
  • El-Khayatt, A.M., Vega-Carrillo, H.R. (2015). Photon and neutron kerma coefficients for polymer gel dosimeters. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 792, 6–10.
  • El-Khayatt, A.M. (2017). Semi-empirical determination of gamma-ray kerma coefficients for materials of shielding and dosimetry from mass attenuation coefficients. Prog. Nucl. Energy 98, 277–284.
  • Kaya, S., Çelik, N., Gök, A. & Çevik, U. (2023). Effect of detector crystal size on Compton suppression factors. Radiation Effects and Defects in Solids, 178(11-12), 1449-1462.
  • Nelson, W.R., Rogers, D.W.O., Hirayama, H. (1985). The EGS4 code system.
  • Gasparro, J., Hult, M., Johnston, P.N., Tagziria, H. (2008). Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 594, 196–201
  • Kaya, S. (2023). Calculation of the effects of silver (Ag) dopant on radiation shielding efficiency of BiPbSrCaCuO superconductor ceramics using EGS4 code. Applied Sciences, 13(14), 8358.
  • Kaya, S. (2023). Calculation of radiation shielding parameters of YBa2Cu3O7 and Y3Ba5Cu8O18 superconductors for the energies from 122 to 1332 keV using EGS4 code. Optical Materials, 144, 114366.
  • Kumar, A., Gaikwad, D.K., Obaid, S.S., Tekin, H.O., Agar, O., Sayyed, M.I., (2020). Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+ x) PbO10WO3 10Na2O− 10MgO–(40-x) B2O3 glasses. Prog. Nucl. Energy 119, 103047
  • Celik, N., Cevik, U. (2010). Monte Carlo determination of water concentration effect on gamma-ray detection efficiency in soil samples. Appl. Radiat. Isot. 68, 1150–1153
  • Gerward, L., Guilbert, N., Jensen, K.B., Leving, H. (2004). WinXCom–a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654
  • Tekin, H.O., Altunsoy, E.E., Kavaz, E., Sayyed, M.I., Agar, O., Kamislioglu, M. (2019). Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys. 12, 1457–1464.
  • Obaid, S.S., Sayyed, M.I., Gaikwad, D.K., Pawar, P.P. (2018). Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94.
  • Gaikwad, D.K., Sayyed, M.I., Botewad, S.N., Obaid, S.S., Khattari, Z.Y., Gawai, U.P., Afaneh, F., Shirshat, M.D., Pawar, P.P. (2019). Physical, structural, optical investigation and shielding featuresof tungsten bismuth tellurite-based glasses. J. Non. Cryst. Solids 503, 158–168.
  • Sayyed, M. I., Akman, F., Kumar, A., & Kaçal, M. R. (2018). Evaluation of radioprotection properties of some selected ceramic samples. Results in Physics, 11, 1100-1104.
  • Thomas, D.J. (2012). ICRU report 85: fundamental quantities and units for ionizing radiation.
  • Attix, F.H. (2008). Introduction to Radiological Physics and Radiation Domisetry, John Wiley & Sons, U.S.A.
  • Abdel-Rahman, W., & Podgorsak, E. B. (2010). Energy transfer and energy absorption in photon interactions with matter revisited: A step-by-step illustrated approach. Radiation Physics and Chemistry, 79(5), 552-566.
  • El-Agawany, F. I., Kavaz, E., Perişanoğlu, U., Al-Buriahi, M. & Rammah, Y. S. (2019). Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems. Applied Physics A, 125, 1-12.
  • Yılmaz, E., Baltas, H., Kırıs, E., Ustabas, I., Cevik, U., El-Khayatt, A.M. (2011). Gamma ray and neutron shielding properties of some concrete materials. Ann. Nucl. Energy 38, 2204–2212.
  • Sirin, M. (2020). The effect of titanium (Ti) additive on radiation shielding efficiency of Al25Zn alloy. Progress in nuclear energy, 128, 103470.
There are 40 citations in total.

Details

Primary Language English
Subjects Atomic and Molecular Physics, Nuclear Physics
Journal Section Research Article
Authors

Selim Kaya 0000-0001-7477-3522

Publication Date November 30, 2025
Submission Date March 26, 2025
Acceptance Date May 26, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Kaya, S. (2025). Investigation of Radiation Shielding Performance in Borosilicate Ceramic Glass Samples. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(2), 555-567. https://doi.org/10.35193/bseufbd.1666031