Review
BibTex RIS Cite

Yeni Nesil Çözücüler: Yeşil Kimya Çözücüleri ile Sürdürülebilir Bir Gelecek

Year 2025, Volume: 12 Issue: 2, 763 - 780, 30.11.2025
https://doi.org/10.35193/bseufbd.1673341

Abstract

Çözücüler, endüstriyel ve tüketici uygulamalarında temel bir rol oynar; ancak, genellikle toksik uçucu organik bileşikler (VOC'ler) içeren geleneksel çözücüler, çevre ve insan sağlığı üzerinde ciddi tehditler oluşturur. Sürdürülebilir alternatiflere yönelik acil ihtiyaç, düşük toksisite, biyolojik olarak parçalanabilirlik ve yeşil kimya prensipleriyle uyumlu yeşil çözücülerin geliştirilmesini hızlandırmıştır. Bu inceleme, 2010-2025 yılları arasında ScienceDirect veri tabanında yayımlanan 21.991 yeşil çözücü makalesine dayanan kapsamlı bir bibliyometrik analiz sunmakta ve VOSviewer aracılığıyla yayın eğilimlerini, dergi dağılımlarını, tematik alanları ve anahtar kelime bağlantılarını haritalandırmaktadır. Analiz, 2020’den itibaren yayınlarda belirgin bir artış olduğunu ve çalışmaların yaklaşık %80’inin 2020-2025 döneminde yoğunlaştığını göstermektedir; bu durum, BM Sürdürülebilir Kalkınma Hedefleri ve AB’nin VOC emisyonlarına yönelik düzenlemeleri gibi küresel sürdürülebilirlik öncelikleriyle uyumludur. Bu çalışma, literatürü eleştirel bir şekilde değerlendirerek yeşil çözücü türlerini—su, süperkritik sıvılar (CO2 ve etanol), iyonik sıvılar (ILs), derin ötektik çözücüler (DESs) ve biyo-bazlı çözücüler—ve bunların kimyasal sentez, ilaç, biyoteknoloji, nanoteknoloji ve çevresel iyileştirme (ağır metal ve boya giderimi gibi) alanlarındaki uygulamalarını karşılaştırmaktadır. Yüksek atıf alan çalışmaları ve yayın eğilimlerini inceleyerek şu soruya yanıt aramaktadır: “Yeşil çözücüler, sürdürülebilir kimyasal süreçler için neden umut vericidir ve tam potansiyellerine ulaşmaları için hangi engeller aşılmalıdır?” İnceleme, ölçeklenebilirlik, maliyet ve yaşam döngüsü etkileri gibi temel zorlukları belirlemekte ve yeşil çözücü gelişimini ilerletmek ve küresel sürdürülebilirlik hedefleriyle uyumu güçlendirmek için yaşam döngüsü değerlendirmeleri (LCAs), disiplinler arası uygulamalar, hibrit çözücü sistemleri ve politika çerçeveleri gibi hedefe yönelik araştırma yönleri önermektedir.

References

  • Anastas, P.T. & Warner, J.C. (1998). Green chemistry: Theory and practice. 14821-14842.
  • Li, C.-J. & Trost, B.M. (2008). Green chemistry for chemical synthesis. Proceedings of the National Academy of Sciences, 105(36), 13197-13202.
  • Schuur, B., Brouwer, T., Smink, D. & Sprakel, L.M.J. (2019). Green solvents for sustainable separation processes. Current Opinion in Green and Sustainable Chemistry, 18, 57-65.
  • Anastas, P.T. & Warner, J.C. (2000). Green chemistry: theory and practice. Oxford university press.
  • Jessop, P.G. (2011). Searching for green solvents. Green Chemistry, 13(6), 1391-1398.
  • Cvjetko Bubalo, M., Vidović, S., Radojčić Redovniković, I. & Jokić, S. (2015). Green solvents for green technologies. Journal of Chemical Technology & Biotechnology, 90(9), 1631-1639.
  • Perna, F.M., Vitale, P. & Capriati, V. (2020). Deep eutectic solvents and their applications as green solvents. Current Opinion in Green and Sustainable Chemistry, 21, 27-33.
  • Silva, P.A.P., Martins, M.A., Almeida, D.T. & Ferreira, F.C. (2025). Green Polyurethane Foam Coated With a Copolymer Containing TiO2 Nanoparticles Through Non‐Solvent Induced Phase Separation: A Photocatalytic Water Cleaning Approach. Journal of Applied Polymer Science, 142(19), e56869.
  • Thongolla, R., Sharma, A., Kumar, D. & Singh, V. (2025). Solvent-free and eco-friendly green protocol for N-Boc Protection of amines using picric acid as a catalyst. Tetrahedron Green Chem, 5, 100061.
  • Lu, H., Tian, W., Gu, B., Zhu, Y. & Zhang, L. (2020). Dopant-free hole transport materials processed with green solvent for efficient perovskite solar cells. Chemical Engineering Journal, 385, 123976.
  • Okoń, S., Zimowska, B. & Rai, M. (2024). Microbial Genetics. CRC Press, Taylor & Francis Group.
  • Jessop, P.G. & Leitner, W. (2008). Chemical synthesis using supercritical fluids. John Wiley & Sons.
  • Hassan, M.M. (2025). A comprehensive review of the advances in process engineering and greener solvents in dyeing to impart sustainable textile manufacturing. Sustainable Materials and Technologies, 45, e01490.
  • Clark, J.H. & Tavener, S.J. (2007). Alternative solvents: shades of green. Organic process research & development, 11(1), 149-155.
  • Smith, E.L., Abbott, A.P. & Ryder, K.S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical reviews, 114(21), 11060-11082.
  • Earle, M.J. & Seddon, K.R. (2000). Ionic liquids. Green solvents for the future. Pure and applied chemistry, 72(7), 1391-1398.
  • Mecerreyes, D. (2011). Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 36(12), 1629-1648.
  • Shanab, K., Neudorfer, C., Schirmer, E. & Spreitzer, H. (2013). Green solvents in organic synthesis: an overview. Current Organic Chemistry, 17(11), 1179-1187.
  • Erdmenger, T., Guerrero-Sanchez, C., Vitz, J., Hoogenboom, R. & Schubert, U.S. (2010). Recent developments in the utilization of green solvents in polymer chemistry. Chemical Society Reviews, 39(8), 3317-3333.
  • Tomlin, J.W., Rodene, D.D. & Gupton, F.B. (2023). A Survey of Continuous API Syntheses: Insights at the Interface of Chemistry and Chemical Engineering. In Continuous Pharmaceutical Processing and Process Analytical Technology. CRC Press. 3-85.
  • Torres-Valenzuela, L.S., Ballesteros-Gómez, A. & Rubio, S. (2020). Green solvents for the extraction of high added-value compounds from agri-food waste. Food Engineering Reviews, 12, 83-100.
  • Paul, S., Pradhan, K. & Das, A.R. (2016). Ethyl lactate as a green solvent: a promising bio-compatible media for organic synthesis. Current Green Chemistry, 3(1), 111-118.
  • Dunne, K. (2024). Lignin as a Bio-Based Alternative for Petroleum-Derived Polyols in Flexible Polyurethane Foams. Michigan State University.
  • Moreno-Marrodan, C., Liguori, F. & Barbaro, P. (2019). Sustainable processes for the catalytic synthesis of safer chemical substitutes of N-methyl-2-pyrrolidone. Molecular Catalysis, 466, 60-69.
  • Ogawa, T., Inoue, N., Shikada, T. & Ohno, Y. (2003). Direct dimethyl ether synthesis. Journal of natural gas chemistry, 12(4), 219-227.
  • Abbott, A.P., Barron, J.C., Ryder, K.S. & Wilson, D. (2011). Glycerol eutectics as sustainable solvent systems. Green Chemistry, 13(1), 82-90.
  • Johnson, W., Heldreth, B., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Shank, R.C., Slaga, T.J., Snyder, P.W. & Andersen, F.A. (2017). Safety assessment of benzyl alcohol, benzoic acid and its salts, and benzyl benzoate. International journal of toxicology, 36(3_suppl), 5S-30S.
  • Hessel, V., Tran, N.N., Asrami, M.R., Tran, Q.D., Long, N.V.D., Escribà-Gelonch, M., Tejada, J.O., Linke, S. & Sundmacher, K. (2022). Sustainability of green solvents–review and perspective. Green Chemistry, 24(2), 410-437.
  • Ebert, J. (2008). Supercritical Methanol for Biodiesel Production. Biodiesel Magazine, April, 80-85.
  • Cousin, E., Hembergie, E., Navarre, N., De Weireld, G. & Frère, M. (2022). Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. Science of The Total Environment, 847, 157599.
  • Pimputkar, S., Kawabata, S., Speck, J.S. & Nakamura, S. (2016). Stability of materials in supercritical ammonia solutions. The Journal of Supercritical Fluids, 110, 193-229.
  • Abdo, D.M., Al-Dhaifallah, M., Elazab, H.A. & Elkady, M. (2023). D-limonene as a promising green solvent for the detachment of end-of-life photovoltaic solar panels under sonication. Processes, 11(6), 1848.
  • Tekin, K., Hao, N., Karagoz, S. & Ragauskas, A.J. (2018). Ethanol: A promising green solvent for the deconstruction of lignocellulose. ChemSusChem, 11(20), 3559-3575.
  • Gallant, B.M., Kim, D.H., Lee, S., Vafaie, M., Kirmani, A.R., Cheng, P., Liu, M., Liu, Y., Sargent, E.H. & Barlow, S. (2024). A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells. Nature Communications, 15(1), 10110.
  • Zhang, Y., Wang, J., Liu, Y. & Chen, X. (2025). Green extraction of oat saponins based on deep eutectic solvents. Journal of Food Composition and Analysis, 107905.
  • Zhang, Y., Wang, J., Liu, Y. & Chen, X. (2025). Green extraction of oat saponins based on deep eutectic solvents. Journal of Food Composition and Analysis, 107905.
  • Husain, A. & Abu-Jdayil, B. (2025). Natural deep eutectic solvent for exclusive and assured green enhanced oil recovery and other oil and gas applications: a review. Journal of Molecular Liquids, 128019.
  • Yang, J., Tan, J.-N. & Gu, Y. (2012). Lactic acid as an invaluable bio-based solvent for organic reactions. Green Chemistry, 14(12), 3304-3317.
  • Das, S., Mondal, A. & Balasubramanian, S. (2017). Recent advances in modeling green solvents. Current opinion in green and sustainable chemistry, 5, 37-43.
  • Cravotto, C., Grillo, G., Binello, A., Mariatti, F., Gunjevic, V. & Radošević, K. (2025). Sustainable grape seed oil processing: Green solvent extraction and byproduct valorisation. Food and Bioproducts Processing, 149, 428-438.
  • Carreño, I. (2023). To Address “Greenwashing” and Misleading Environmental Claims, the European Commission Publishes a Proposal on “Green Claims” and Their Substantiation. European Journal of Risk Regulation, 14(3), 607-611.
  • Hardian, R., Szekely, G., Diallo, M.S. & Dutta, J. (2022). Sustainable nanofiltration membranes based on biosourced fully recyclable polyesters and green solvents. Journal of Membrane Science Letters, 2(1), 100016.
  • Abdelhamid, H.N. & Mathew, A.P. (2022). Cellulose-based nanomaterials advance biomedicine: a review. International Journal of Molecular Sciences, 23(10), 5405.
  • Pamukoglu, M.Y. & Kargi, F. (2006). Removal of copper (II) ions from aqueous medium by biosorption onto powdered waste sludge. Process Biochemistry, 41(5), 1047-1054.
  • Welton, T. (2018). Ionic liquids: a brief history. Biophysical reviews, 10(3), 691-706.
  • Widyaningsih, M., Wibowo, C., Sutrisno, B. & Hidayat, A.S. (2025). Betaine-cis-oleic acid based eutectic ionic liquids as green solvent for recovery of rare earth elements from red mud. Total Environment Engineering, 2, 100003.
  • Azzena, U., Carraro, M., Mamuye, A.D., Mocci, R., Pisano, L. & Pilo, M.I. (2019). Cyclopentyl methyl ether: an elective ecofriendly ethereal solvent in classical and modern organic chemistry. ChemSusChem, 12(1), 40-70.
  • Piqueras, C.M., Cismondi, M., Bottini, S.B. & Brignole, E.A. (2015). Improving the purification of hydroxyethyl starch by means of supercritical and near-critical fluid extraction using CO2 and a mixture of CO2–ethanol. A combined experimental and modeling study. Chemical Engineering and Processing: Process Intensification, 88, 89-98.
  • Viñas-Ospino, A., Esteve, M.J., Frígola, A. & Blesa, J. (2023). Green solvents: Emerging alternatives for carotenoid extraction from fruit and vegetable by-products. Foods, 12(4), 863.
  • Liu, J., Li, X. & Row, K.H. (2022). Development of deep eutectic solvents for sustainable chemistry. Journal of Molecular Liquids, 362, 119654.
  • Ordóñez-Santos, L.E., Esparza-Estrada, J. & Vanegas-Mahecha, P. (2021). Ultrasound-assisted extraction of total carotenoids from mandarin epicarp and application as natural colorant in bakery products. Lwt, 139, 110598.
  • del Pilar Sánchez-Camargo, A., Bueno, M., Ballesteros-Vivas, D., Parada-Alfonso, F. & Cifuentes, A. (2019). Hansen solubility parameters for selection of green extraction solvents. TrAC Trends in Analytical Chemistry, 118, 227-237.
  • Chutia, H. & Mahanta, C.L. (2021). Green ultrasound and microwave extraction of carotenoids from passion fruit peel using vegetable oils as a solvent: Optimization, comparison, kinetics, and thermodynamic studies. Innovative Food Science & Emerging Technologies, 67, 102547.
  • Alanazi, M., Alruwaili, N.K., Alsuwayt, B., Alshora, D.H. & Alhakamy, N.A. (2023). Development of a novel machine learning approach to optimize important parameters for improving the solubility of an anti-cancer drug within green chemistry solvent. Case Studies in Thermal Engineering, 49, 103273.
  • de Souza Mesquita, L.M., Martins, M., Maricato, É., Nunes, C., Quinteiro, P.S.S.G., Dias, A.C.R.V., Coutinho, J.A.P., Pisano, R., Ventura, S.P.M. & Rosário, M. (2020). Ionic liquid-mediated recovery of carotenoids from the Bactris gasipaes fruit waste and their application in food-packaging chitosan films. ACS Sustainable Chemistry & Engineering, 8(10), 4085-4095.
  • Di Gioia, S., Trapani, A., Mandracchia, D., Esteban, M.P., Ozturk, O., Ethemoglu, M. & Laquintana, V. (2023). Carboxymethyl chitosan dopamine conjugates: Synthesis and evaluation for intranasal anti Parkinson therapy. International Journal of Biological Macromolecules, 253, 127174.
  • Kalisz, O., Kula, K., Grela, I. & Sajewicz, M. (2025). Performance evaluation of green and conventional solvents in reversed-phase liquid chromatography based on the separation of non-polar and polar substances. Green Chemistry, 27(11), 3020-3031.
  • Namazi, N.I., Alhakamy, N.A., Kalam, M.A., Haggag, Y.A. & Alruwaili, N.K. (2022). Solubility enhancement of decitabine as anticancer drug via green chemistry solvent: Novel computational prediction and optimization. Arabian Journal of Chemistry, 15(12), 104259.
  • Levent, S., Yildiz, A., Subasi, N. & Yildirim, R. (2016). Extraction of boric acid from tincal mineral by supercritical ethanol. The Journal of Supercritical Fluids, 109, 67-73.
  • Pamukoglu, M.Y., Kirkan, B. & Yoldas, B. (2024). Green synthesis of SiNH2@ FeNP nanocomposite using and removal of methylene blue from aqueous solution: experimental design approach. International Journal of Environmental Analytical Chemistry, 104(16), 3694-3712.
  • Soares, S. & Rocha, F.R. (2025). Biodiesel as a green alternative solvent in dispersive liquid-liquid microextraction. Advances in Sample Preparation, 13, 100163.
  • Ayyildiz, H.F., Shoaib, H. & Kara, H. (2023). Bioactive Phytochemicals from Palm Oil Processing By-products. In Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-Products. Springer. 235-268.
  • Gu, Y. & Jérôme, F. (2013). Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chemical Society Reviews, 42(24), 9550-9570.
  • Rasool, M.A. & Vankelecom, I.F. (2019). Use of γ-valerolactone and glycerol derivatives as bio-based renewable solvents for membrane preparation. Green chemistry, 21(5), 1054-1064.
  • Singh, S.K. & Savoy, A.W. (2020). Ionic liquids synthesis and applications: An overview. Journal of Molecular Liquids, 297, 112038.
  • Alshahrani, S.M., Alhakamy, N.A., Ahmad, J., Md, S. & Alruwaili, N.K. (2023). Green processing based on supercritical carbon dioxide for preparation of nanomedicine: model development using machine learning and experimental validation. Case Studies in Thermal Engineering, 41, 102620.
  • Obaidullah, A.J. (2023). Implementing and tuning machine learning-based models for description of solubility variations of nanomedicine in supercritical solvent for development of green processing. Case Studies in Thermal Engineering, 49, 103200.
  • Majrashi, M.A.A., Alhakamy, N.A., Alruwaili, N.K., Ahmad, J. & Md, S. (2024). Nonsteroidal anti-inflammatory drug solubility optimization through green chemistry solvent: Artificial intelligence technique. Case Studies in Thermal Engineering, 53, 103767.
  • Tenorio-Alfonso, A., Sánchez, M.C. & Franco, J.M. (2022). Impact of the processing method on the properties of castor oil/cellulose acetate polyurethane adhesives for bonding wood. International Journal of Adhesion and Adhesives, 116, 103153.
  • Tan, X. & Nielsen, J. (2022). The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chemical Society Reviews, 51(11), 4763-4785.
  • Gude, V.G. (2017). Microwave-mediated biofuel production. CRC Press.
  • Rani, M. & Shanker, U. (2019). Green solvents in chemical reactions. Materials Research Foundations, 50, 165-241.
  • Yudaev, P.A., Tamboura, B. & Chistyakov, E.M. (2023). Antistatic polymer materials. Nanotekhnologii v Stroitel'stve, 15(2), 139-151.
  • Shi, J., Zhang, L., Yang, B., Jiang, J., Li, Y. & Wang, J. (2023). Supercritical CO2-applied equipment for chemical synthesis and transformation: Current status and perspectives. Chemical Engineering Journal, 459, 141608.
  • Pagliaro, M., Fabiano-Tixier, A.-S. & Ciriminna, R. (2023). Limonene as a natural product extraction solvent. Green Chemistry, 25(16), 6108-6119.
  • Li, X., Zhang, C., Liu, Y., Li, K., Bai, F. & Zhao, X. (2019). Biocycle fermentation based on lactic acid bacteria and yeast for the production of natural ethyl lactate. ACS omega, 4(14), 16009-16015.
  • Du, Y., Cai, F., Kong, D.-L. & He, L.-N. (2005). Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chemistry, 7(7), 518-523.
  • Jouyban, A., Fakhree, M.A.A. & Shayanfar, A. (2010). Review of pharmaceutical applications of N-methyl-2-pyrrolidone. Journal of Pharmacy & Pharmaceutical Sciences, 13(4), 524-535.
  • Slater, C.S., Savelski, M.J., Carole, W.A. & Constable, D.J.C. (2016). Environmental analysis of the life cycle emissions of 2-methyl tetrahydrofuran solvent manufactured from renewable resources. Journal of Environmental Science and Health, Part A, 51(6), 487-494.
  • Subratti, A., Lalgee, L.J. & Jalsa, N.K. (2018). Liquefied dimethyl ether (DME) as a green solvent in chemical reactions: Synthesis of O-alkyl trichloroacetimidates. Sustainable Chemistry and Pharmacy, 9, 46-50.
  • Wolfson, A., Dlugy, C. & Shotland, Y. (2007). Glycerol as a green solvent for high product yields and selectivities. Environmental Chemistry Letters, 5, 67-71.
  • Said, S. & Riad, M. (2019). Oxidation of benzyl alcohol through eco-friendly processes using Fe-doped cryptomelane catalysts. Solid State Sciences, 94, 145-154.
  • Gani, R., Jiménez-González, C. & Constable, D.J. (2005). Method for selection of solvents for promotion of organic reactions. Computers & Chemical Engineering, 29(7), 1661-1676.
  • Marcus, Y. (2012). Supercritical Water: A Green Solvent: Properties and Uses. John Wiley & Sons.
  • Yong, K.J., Wu, T.Y., Lee, C.B.T.L., Lee, Z.J., Liu, Q. & Jahim, J.M. (2022). Furfural production from biomass residues: Current technologies, challenges and future prospects. Biomass and Bioenergy, 161, 106458.
  • Anastas, P.T., Leitner, W. & Jessop, P.G. (2014). Green Solvents, Volume 4: Supercritical Solvents. John Wiley & Sons.

Next Generation Solvents: A Sustainable Future with Green Chemistry Solvents

Year 2025, Volume: 12 Issue: 2, 763 - 780, 30.11.2025
https://doi.org/10.35193/bseufbd.1673341

Abstract

Solvents are indispensable in industrial and consumer applications, yet conventional solvents, often comprising toxic volatile organic compounds (VOCs), pose significant risks to environmental and human health. The urgent need for sustainable alternatives has driven the development of green solvents, characterized by low toxicity, biodegradability, and alignment with green chemistry principles. This review conducts a comprehensive bibliometric analysis of 21.991 articles on green solvents published in the ScienceDirect database from 2010 to 2025, utilizing VOSviewer to map publication trends, journal distributions, subject areas, and keyword relationships. The analysis reveals a surge in publications since 2020, with approximately 80% of studies concentrated between 2010 and 2025, reflecting global sustainability priorities such as the UN Sustainable Development Goals and EU regulations on VOC emissions. This study critically synthesizes the literature, comparing green solvent types—water, supercritical fluids (CO2 and ethanol), ionic liquids (ILs), deep eutectic solvents (DESs), and bio-based solvents—and their applications in chemical synthesis, pharmaceuticals, biotechnology, nanotechnology, and environmental remediation, including heavy metal and dye removal. By analyzing highly cited works and publication trends, it addresses the question: “What makes green solvents promising for sustainable chemical processes, and what barriers must be overcome to realize their full potential?” The review identifies key challenges, such as scalability, cost, and lifecycle impacts, and proposes targeted research directions, including lifecycle assessments (LCAs), interdisciplinary applications, hybrid solvent systems, and policy frameworks, to advance green solvent development and align with global sustainability goals.

References

  • Anastas, P.T. & Warner, J.C. (1998). Green chemistry: Theory and practice. 14821-14842.
  • Li, C.-J. & Trost, B.M. (2008). Green chemistry for chemical synthesis. Proceedings of the National Academy of Sciences, 105(36), 13197-13202.
  • Schuur, B., Brouwer, T., Smink, D. & Sprakel, L.M.J. (2019). Green solvents for sustainable separation processes. Current Opinion in Green and Sustainable Chemistry, 18, 57-65.
  • Anastas, P.T. & Warner, J.C. (2000). Green chemistry: theory and practice. Oxford university press.
  • Jessop, P.G. (2011). Searching for green solvents. Green Chemistry, 13(6), 1391-1398.
  • Cvjetko Bubalo, M., Vidović, S., Radojčić Redovniković, I. & Jokić, S. (2015). Green solvents for green technologies. Journal of Chemical Technology & Biotechnology, 90(9), 1631-1639.
  • Perna, F.M., Vitale, P. & Capriati, V. (2020). Deep eutectic solvents and their applications as green solvents. Current Opinion in Green and Sustainable Chemistry, 21, 27-33.
  • Silva, P.A.P., Martins, M.A., Almeida, D.T. & Ferreira, F.C. (2025). Green Polyurethane Foam Coated With a Copolymer Containing TiO2 Nanoparticles Through Non‐Solvent Induced Phase Separation: A Photocatalytic Water Cleaning Approach. Journal of Applied Polymer Science, 142(19), e56869.
  • Thongolla, R., Sharma, A., Kumar, D. & Singh, V. (2025). Solvent-free and eco-friendly green protocol for N-Boc Protection of amines using picric acid as a catalyst. Tetrahedron Green Chem, 5, 100061.
  • Lu, H., Tian, W., Gu, B., Zhu, Y. & Zhang, L. (2020). Dopant-free hole transport materials processed with green solvent for efficient perovskite solar cells. Chemical Engineering Journal, 385, 123976.
  • Okoń, S., Zimowska, B. & Rai, M. (2024). Microbial Genetics. CRC Press, Taylor & Francis Group.
  • Jessop, P.G. & Leitner, W. (2008). Chemical synthesis using supercritical fluids. John Wiley & Sons.
  • Hassan, M.M. (2025). A comprehensive review of the advances in process engineering and greener solvents in dyeing to impart sustainable textile manufacturing. Sustainable Materials and Technologies, 45, e01490.
  • Clark, J.H. & Tavener, S.J. (2007). Alternative solvents: shades of green. Organic process research & development, 11(1), 149-155.
  • Smith, E.L., Abbott, A.P. & Ryder, K.S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical reviews, 114(21), 11060-11082.
  • Earle, M.J. & Seddon, K.R. (2000). Ionic liquids. Green solvents for the future. Pure and applied chemistry, 72(7), 1391-1398.
  • Mecerreyes, D. (2011). Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 36(12), 1629-1648.
  • Shanab, K., Neudorfer, C., Schirmer, E. & Spreitzer, H. (2013). Green solvents in organic synthesis: an overview. Current Organic Chemistry, 17(11), 1179-1187.
  • Erdmenger, T., Guerrero-Sanchez, C., Vitz, J., Hoogenboom, R. & Schubert, U.S. (2010). Recent developments in the utilization of green solvents in polymer chemistry. Chemical Society Reviews, 39(8), 3317-3333.
  • Tomlin, J.W., Rodene, D.D. & Gupton, F.B. (2023). A Survey of Continuous API Syntheses: Insights at the Interface of Chemistry and Chemical Engineering. In Continuous Pharmaceutical Processing and Process Analytical Technology. CRC Press. 3-85.
  • Torres-Valenzuela, L.S., Ballesteros-Gómez, A. & Rubio, S. (2020). Green solvents for the extraction of high added-value compounds from agri-food waste. Food Engineering Reviews, 12, 83-100.
  • Paul, S., Pradhan, K. & Das, A.R. (2016). Ethyl lactate as a green solvent: a promising bio-compatible media for organic synthesis. Current Green Chemistry, 3(1), 111-118.
  • Dunne, K. (2024). Lignin as a Bio-Based Alternative for Petroleum-Derived Polyols in Flexible Polyurethane Foams. Michigan State University.
  • Moreno-Marrodan, C., Liguori, F. & Barbaro, P. (2019). Sustainable processes for the catalytic synthesis of safer chemical substitutes of N-methyl-2-pyrrolidone. Molecular Catalysis, 466, 60-69.
  • Ogawa, T., Inoue, N., Shikada, T. & Ohno, Y. (2003). Direct dimethyl ether synthesis. Journal of natural gas chemistry, 12(4), 219-227.
  • Abbott, A.P., Barron, J.C., Ryder, K.S. & Wilson, D. (2011). Glycerol eutectics as sustainable solvent systems. Green Chemistry, 13(1), 82-90.
  • Johnson, W., Heldreth, B., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Shank, R.C., Slaga, T.J., Snyder, P.W. & Andersen, F.A. (2017). Safety assessment of benzyl alcohol, benzoic acid and its salts, and benzyl benzoate. International journal of toxicology, 36(3_suppl), 5S-30S.
  • Hessel, V., Tran, N.N., Asrami, M.R., Tran, Q.D., Long, N.V.D., Escribà-Gelonch, M., Tejada, J.O., Linke, S. & Sundmacher, K. (2022). Sustainability of green solvents–review and perspective. Green Chemistry, 24(2), 410-437.
  • Ebert, J. (2008). Supercritical Methanol for Biodiesel Production. Biodiesel Magazine, April, 80-85.
  • Cousin, E., Hembergie, E., Navarre, N., De Weireld, G. & Frère, M. (2022). Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. Science of The Total Environment, 847, 157599.
  • Pimputkar, S., Kawabata, S., Speck, J.S. & Nakamura, S. (2016). Stability of materials in supercritical ammonia solutions. The Journal of Supercritical Fluids, 110, 193-229.
  • Abdo, D.M., Al-Dhaifallah, M., Elazab, H.A. & Elkady, M. (2023). D-limonene as a promising green solvent for the detachment of end-of-life photovoltaic solar panels under sonication. Processes, 11(6), 1848.
  • Tekin, K., Hao, N., Karagoz, S. & Ragauskas, A.J. (2018). Ethanol: A promising green solvent for the deconstruction of lignocellulose. ChemSusChem, 11(20), 3559-3575.
  • Gallant, B.M., Kim, D.H., Lee, S., Vafaie, M., Kirmani, A.R., Cheng, P., Liu, M., Liu, Y., Sargent, E.H. & Barlow, S. (2024). A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells. Nature Communications, 15(1), 10110.
  • Zhang, Y., Wang, J., Liu, Y. & Chen, X. (2025). Green extraction of oat saponins based on deep eutectic solvents. Journal of Food Composition and Analysis, 107905.
  • Zhang, Y., Wang, J., Liu, Y. & Chen, X. (2025). Green extraction of oat saponins based on deep eutectic solvents. Journal of Food Composition and Analysis, 107905.
  • Husain, A. & Abu-Jdayil, B. (2025). Natural deep eutectic solvent for exclusive and assured green enhanced oil recovery and other oil and gas applications: a review. Journal of Molecular Liquids, 128019.
  • Yang, J., Tan, J.-N. & Gu, Y. (2012). Lactic acid as an invaluable bio-based solvent for organic reactions. Green Chemistry, 14(12), 3304-3317.
  • Das, S., Mondal, A. & Balasubramanian, S. (2017). Recent advances in modeling green solvents. Current opinion in green and sustainable chemistry, 5, 37-43.
  • Cravotto, C., Grillo, G., Binello, A., Mariatti, F., Gunjevic, V. & Radošević, K. (2025). Sustainable grape seed oil processing: Green solvent extraction and byproduct valorisation. Food and Bioproducts Processing, 149, 428-438.
  • Carreño, I. (2023). To Address “Greenwashing” and Misleading Environmental Claims, the European Commission Publishes a Proposal on “Green Claims” and Their Substantiation. European Journal of Risk Regulation, 14(3), 607-611.
  • Hardian, R., Szekely, G., Diallo, M.S. & Dutta, J. (2022). Sustainable nanofiltration membranes based on biosourced fully recyclable polyesters and green solvents. Journal of Membrane Science Letters, 2(1), 100016.
  • Abdelhamid, H.N. & Mathew, A.P. (2022). Cellulose-based nanomaterials advance biomedicine: a review. International Journal of Molecular Sciences, 23(10), 5405.
  • Pamukoglu, M.Y. & Kargi, F. (2006). Removal of copper (II) ions from aqueous medium by biosorption onto powdered waste sludge. Process Biochemistry, 41(5), 1047-1054.
  • Welton, T. (2018). Ionic liquids: a brief history. Biophysical reviews, 10(3), 691-706.
  • Widyaningsih, M., Wibowo, C., Sutrisno, B. & Hidayat, A.S. (2025). Betaine-cis-oleic acid based eutectic ionic liquids as green solvent for recovery of rare earth elements from red mud. Total Environment Engineering, 2, 100003.
  • Azzena, U., Carraro, M., Mamuye, A.D., Mocci, R., Pisano, L. & Pilo, M.I. (2019). Cyclopentyl methyl ether: an elective ecofriendly ethereal solvent in classical and modern organic chemistry. ChemSusChem, 12(1), 40-70.
  • Piqueras, C.M., Cismondi, M., Bottini, S.B. & Brignole, E.A. (2015). Improving the purification of hydroxyethyl starch by means of supercritical and near-critical fluid extraction using CO2 and a mixture of CO2–ethanol. A combined experimental and modeling study. Chemical Engineering and Processing: Process Intensification, 88, 89-98.
  • Viñas-Ospino, A., Esteve, M.J., Frígola, A. & Blesa, J. (2023). Green solvents: Emerging alternatives for carotenoid extraction from fruit and vegetable by-products. Foods, 12(4), 863.
  • Liu, J., Li, X. & Row, K.H. (2022). Development of deep eutectic solvents for sustainable chemistry. Journal of Molecular Liquids, 362, 119654.
  • Ordóñez-Santos, L.E., Esparza-Estrada, J. & Vanegas-Mahecha, P. (2021). Ultrasound-assisted extraction of total carotenoids from mandarin epicarp and application as natural colorant in bakery products. Lwt, 139, 110598.
  • del Pilar Sánchez-Camargo, A., Bueno, M., Ballesteros-Vivas, D., Parada-Alfonso, F. & Cifuentes, A. (2019). Hansen solubility parameters for selection of green extraction solvents. TrAC Trends in Analytical Chemistry, 118, 227-237.
  • Chutia, H. & Mahanta, C.L. (2021). Green ultrasound and microwave extraction of carotenoids from passion fruit peel using vegetable oils as a solvent: Optimization, comparison, kinetics, and thermodynamic studies. Innovative Food Science & Emerging Technologies, 67, 102547.
  • Alanazi, M., Alruwaili, N.K., Alsuwayt, B., Alshora, D.H. & Alhakamy, N.A. (2023). Development of a novel machine learning approach to optimize important parameters for improving the solubility of an anti-cancer drug within green chemistry solvent. Case Studies in Thermal Engineering, 49, 103273.
  • de Souza Mesquita, L.M., Martins, M., Maricato, É., Nunes, C., Quinteiro, P.S.S.G., Dias, A.C.R.V., Coutinho, J.A.P., Pisano, R., Ventura, S.P.M. & Rosário, M. (2020). Ionic liquid-mediated recovery of carotenoids from the Bactris gasipaes fruit waste and their application in food-packaging chitosan films. ACS Sustainable Chemistry & Engineering, 8(10), 4085-4095.
  • Di Gioia, S., Trapani, A., Mandracchia, D., Esteban, M.P., Ozturk, O., Ethemoglu, M. & Laquintana, V. (2023). Carboxymethyl chitosan dopamine conjugates: Synthesis and evaluation for intranasal anti Parkinson therapy. International Journal of Biological Macromolecules, 253, 127174.
  • Kalisz, O., Kula, K., Grela, I. & Sajewicz, M. (2025). Performance evaluation of green and conventional solvents in reversed-phase liquid chromatography based on the separation of non-polar and polar substances. Green Chemistry, 27(11), 3020-3031.
  • Namazi, N.I., Alhakamy, N.A., Kalam, M.A., Haggag, Y.A. & Alruwaili, N.K. (2022). Solubility enhancement of decitabine as anticancer drug via green chemistry solvent: Novel computational prediction and optimization. Arabian Journal of Chemistry, 15(12), 104259.
  • Levent, S., Yildiz, A., Subasi, N. & Yildirim, R. (2016). Extraction of boric acid from tincal mineral by supercritical ethanol. The Journal of Supercritical Fluids, 109, 67-73.
  • Pamukoglu, M.Y., Kirkan, B. & Yoldas, B. (2024). Green synthesis of SiNH2@ FeNP nanocomposite using and removal of methylene blue from aqueous solution: experimental design approach. International Journal of Environmental Analytical Chemistry, 104(16), 3694-3712.
  • Soares, S. & Rocha, F.R. (2025). Biodiesel as a green alternative solvent in dispersive liquid-liquid microextraction. Advances in Sample Preparation, 13, 100163.
  • Ayyildiz, H.F., Shoaib, H. & Kara, H. (2023). Bioactive Phytochemicals from Palm Oil Processing By-products. In Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-Products. Springer. 235-268.
  • Gu, Y. & Jérôme, F. (2013). Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chemical Society Reviews, 42(24), 9550-9570.
  • Rasool, M.A. & Vankelecom, I.F. (2019). Use of γ-valerolactone and glycerol derivatives as bio-based renewable solvents for membrane preparation. Green chemistry, 21(5), 1054-1064.
  • Singh, S.K. & Savoy, A.W. (2020). Ionic liquids synthesis and applications: An overview. Journal of Molecular Liquids, 297, 112038.
  • Alshahrani, S.M., Alhakamy, N.A., Ahmad, J., Md, S. & Alruwaili, N.K. (2023). Green processing based on supercritical carbon dioxide for preparation of nanomedicine: model development using machine learning and experimental validation. Case Studies in Thermal Engineering, 41, 102620.
  • Obaidullah, A.J. (2023). Implementing and tuning machine learning-based models for description of solubility variations of nanomedicine in supercritical solvent for development of green processing. Case Studies in Thermal Engineering, 49, 103200.
  • Majrashi, M.A.A., Alhakamy, N.A., Alruwaili, N.K., Ahmad, J. & Md, S. (2024). Nonsteroidal anti-inflammatory drug solubility optimization through green chemistry solvent: Artificial intelligence technique. Case Studies in Thermal Engineering, 53, 103767.
  • Tenorio-Alfonso, A., Sánchez, M.C. & Franco, J.M. (2022). Impact of the processing method on the properties of castor oil/cellulose acetate polyurethane adhesives for bonding wood. International Journal of Adhesion and Adhesives, 116, 103153.
  • Tan, X. & Nielsen, J. (2022). The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chemical Society Reviews, 51(11), 4763-4785.
  • Gude, V.G. (2017). Microwave-mediated biofuel production. CRC Press.
  • Rani, M. & Shanker, U. (2019). Green solvents in chemical reactions. Materials Research Foundations, 50, 165-241.
  • Yudaev, P.A., Tamboura, B. & Chistyakov, E.M. (2023). Antistatic polymer materials. Nanotekhnologii v Stroitel'stve, 15(2), 139-151.
  • Shi, J., Zhang, L., Yang, B., Jiang, J., Li, Y. & Wang, J. (2023). Supercritical CO2-applied equipment for chemical synthesis and transformation: Current status and perspectives. Chemical Engineering Journal, 459, 141608.
  • Pagliaro, M., Fabiano-Tixier, A.-S. & Ciriminna, R. (2023). Limonene as a natural product extraction solvent. Green Chemistry, 25(16), 6108-6119.
  • Li, X., Zhang, C., Liu, Y., Li, K., Bai, F. & Zhao, X. (2019). Biocycle fermentation based on lactic acid bacteria and yeast for the production of natural ethyl lactate. ACS omega, 4(14), 16009-16015.
  • Du, Y., Cai, F., Kong, D.-L. & He, L.-N. (2005). Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chemistry, 7(7), 518-523.
  • Jouyban, A., Fakhree, M.A.A. & Shayanfar, A. (2010). Review of pharmaceutical applications of N-methyl-2-pyrrolidone. Journal of Pharmacy & Pharmaceutical Sciences, 13(4), 524-535.
  • Slater, C.S., Savelski, M.J., Carole, W.A. & Constable, D.J.C. (2016). Environmental analysis of the life cycle emissions of 2-methyl tetrahydrofuran solvent manufactured from renewable resources. Journal of Environmental Science and Health, Part A, 51(6), 487-494.
  • Subratti, A., Lalgee, L.J. & Jalsa, N.K. (2018). Liquefied dimethyl ether (DME) as a green solvent in chemical reactions: Synthesis of O-alkyl trichloroacetimidates. Sustainable Chemistry and Pharmacy, 9, 46-50.
  • Wolfson, A., Dlugy, C. & Shotland, Y. (2007). Glycerol as a green solvent for high product yields and selectivities. Environmental Chemistry Letters, 5, 67-71.
  • Said, S. & Riad, M. (2019). Oxidation of benzyl alcohol through eco-friendly processes using Fe-doped cryptomelane catalysts. Solid State Sciences, 94, 145-154.
  • Gani, R., Jiménez-González, C. & Constable, D.J. (2005). Method for selection of solvents for promotion of organic reactions. Computers & Chemical Engineering, 29(7), 1661-1676.
  • Marcus, Y. (2012). Supercritical Water: A Green Solvent: Properties and Uses. John Wiley & Sons.
  • Yong, K.J., Wu, T.Y., Lee, C.B.T.L., Lee, Z.J., Liu, Q. & Jahim, J.M. (2022). Furfural production from biomass residues: Current technologies, challenges and future prospects. Biomass and Bioenergy, 161, 106458.
  • Anastas, P.T., Leitner, W. & Jessop, P.G. (2014). Green Solvents, Volume 4: Supercritical Solvents. John Wiley & Sons.
There are 86 citations in total.

Details

Primary Language English
Subjects Environmental and Sustainable Processes
Journal Section Review
Authors

Cihan Yaylaci 0000-0002-5510-3686

Publication Date November 30, 2025
Submission Date April 10, 2025
Acceptance Date September 8, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Yaylaci, C. (2025). Next Generation Solvents: A Sustainable Future with Green Chemistry Solvents. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(2), 763-780. https://doi.org/10.35193/bseufbd.1673341