Research Article
BibTex RIS Cite

Hemostatik Malzemelerin Sentezi ve Karakterizasyonu

Year 2025, Volume: 12 Issue: 2, 568 - 588, 30.11.2025
https://doi.org/10.35193/bseufbd.1714511

Abstract

Bu çalışmada, çeşitli spor dallarındaki travmatik durumlarda, trafik kazalarında ve tıbbi müdahale olmaksızın hemen her durumda kullanılan yüksek uygulanabilirliğe sahip bir hemostatik malzeme üzerinde çalışılmıştır. Hemostatik maddenin sentezlenmesi sırasında doku rejenerasyonu ve onarımı gibi önemli özelliklere sahip olan kitin ve kitosan türevleri kullanılmıştır. Dokunmamış kitin, çeşitli şekillerde kitinin fibriller formunu üretmek için işlenmiştir. Öncelikle kitin nanofibril çözeltileri hazırlanmış ve sprey, jel ve toz numuneleri bakımından giriş malzemeleri olarak tanımlanmıştır. Böylece kitosan saflaştırma işlemlerine tabi tutulmuş ve daha sonra kitosan tuzlarını elde etmek amacıyla fizyolojik bakımından uyumlu olabilecek asitlerle çözündürülmüştür. Elde edilen çözeltilere ilave olarak kan durdurma aşamalarında mühim etkileri olabilecek koagülasyon unsurları da dâhil edilmiştir. Son olarak hemostatik malzemeler İndüktif Eşleşmiş Plazma, Diferansiyel Termal Analiz-Termal Gravimetrik Analiz, Fourier Dönüşümlü Kızılötesi Spektrometresi, X-Işını Kırınımı, X-Işını Fotoelektron Spektroskopisi ve Taramalı Elektron Mikroskopisi ile ayrıntılı olarak karakterize edilmiştir. Tüm bu parametreler tarafından üretilen hemostatik ajanın travma durumlarında yararlı bir malzeme olacağı öne sürülmüştür.

References

  • Özler, M. (2017). Synthesis and Characterization of Nanoscaled Hemostatic Materials. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Nanobilim ve Nanomühendislik Anabilim Dalı, İzmir.
  • McNeilly, B., Samsey, K., Kelly, S., Pennartd, A., & Francis, X. G. (2025). Prehospital Blood Administration in Traumatic Hemorrhagic Shock. JACEP Open, 6 (2), 1-6.
  • Cannon, JW. (2018). Hemorrhagic Shock. The New England Journal of Medicine, 378 (4), 370-379.
  • Schaefer, R. M., Bank, E. A., & Krohmer, J. R., et al. (2024). Removing the barriers to prehospital blood: A roadmap to success. Journal of Trauma and Acute Care Surgery, 97 (2), 138-144.
  • Howard, J. T., Kotwal, R. S., & Stern, C. A., et al. (2019). Use of combat casualty care data to assess the US Military trauma system during the Afghanistan and Iraq conflicts. JAMA Surgery, 154 (7), 600-608.
  • Yu, C., Yong, Z., Fengju, W., Weiwei, M., Xinlin, Y., Peng, L., Jianxin, J., Huimin, T., & Yongfa, Z. (2016). Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as hemostatic wound dressing. Materials Science and Engineering, 63, 18–29.
  • Lalitha, G., Lakshmi, N. R., Swaminathan, S., & Uma, M. K. (2014). Ellagic acid encapsulated chitosan nanoparticles as anti-hemorrhagic agents. Carbohydrate Polymers, 111, 215–221.
  • Bon Kang, G., Sang Jun, P., Min Sup, K., Yong Jin, L., Jong, K., & Chun, K. (2016). Gelatin blending and sonication of chitosan nanofiber mats produce synergistic effects on hemostatic functions. International Journal of Biological Macromolecules, 82, 89–96.
  • Matthew, B. D., William, S., Peter, B., Michael, J. D., Ian, C. M., Erica, H., Tomaz, M., Srinivasa, R. R., & David, R. K. (2015). Hydrophobically-modified chitosan foam: description and hemostatic efficacy. Journal of surgical research, 193, 316-323.
  • Hu-Fan, S., Ai-Zheng, C., Shi-Bin, W., Yong-Qiang, K., Shi-Fu, Y., Yuan-Gang, L., & Wen-Guo, W. (2014). Preparation of Chitosan-Based Haemostatic Sponges by Supercritical. Fluid Technology Materials, 7, 2459-2473.
  • Ji, Y., Patricia W. S., Isaac, A. R., & Gary, L. B. (2012). Chitin nanofibril/polycaprolactone nanocomposite from a nonaqueous medium suspension. Carbohydrate Polymers, 87, 2313–2319.
  • Ji, Y., Kai, L., Xinyuan, S., & Gary L. B. (2014). Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydrate Polymers, 101, 68-74.
  • Levy, M. J., Garfinkel, E. M., & May, R., et al. (2024). Implementation of a prehospital whole blood program: lessons learned. Journal of the American College Emergency Physicians, 5 (2), 131-142.
  • Wang, L. S., Wang, C. Y., Yang, C. H., Hsieh, C.L., Chen, S. Y., Shen, C. Y., Wang, J. J., & Huang, K. S. (2015). Synthesis and Anti-Fungal Effect of Silver Nanoparticles–Chitosan Composite Particles. International Journal of Nanomedicine, 10, 2685–2696.
  • Ashenhurst, J. (2025). Alkanlar ve Adlandırma. Kimya Eğitimi Dergisi, https://www.masterorganicchemistry.com, (2025/10/06).
  • Garnpimol, C. R., Thawatchai, P., & Tamotsu, K. (2002). Moist heat treatment on physicochemical change of chitosan salt films. International Journal of Pharmaceutics, 232, 11-22.
  • Ya-li, J., Patricia, S. W., Isaac, A. R., & Gary, L. B. (2012). Preparation of chitin nanofibril/polycaprolactone nanocomposite from a nonaqueous medium suspension. Carbohydrate Polymers, 87, 2313-2319.
  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16 (10), 2346-253.
  • Suri, S. S., Fenniri, H., & Singh, B. (2007). Nanotechnology-based drug delivery systems. Journal of Occupational Medicine and Toxicology, 2 (16), 1-6.
  • Torres, G. S., Ocio, M., & Lagaron, J. M. (2008). Development of active antimicrobial fiberbased chitosan polysaccharide nanostructures using electrospinning. Engineering in Life Sciences, 8 (3), 303-14.
  • Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339 (16), 693-700.
  • Rajalakshmi, R., Indira, M. Y., Aruna, U., Vinesha, V., Rupangada, V., & Krishna, S. B. (2014). Chitosan nanoparticles - an emerging trend in nanotechnology. International Journal of Drug Delivery, 6 (3), 204-29.
  • Jena, P., Mohanty, S., Mallick, R., Jacob. B., & Sonawane, A. (2012). Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. International Journal of Nanomedicine, 7, 1805-18.
  • Perez, D. M., Alvarado, G. E., Sanchez, S. R., Velasquillo, C., Gonzalez, C., Ganem, R. A., Martinez, C. G., Zavala, A. N., & Martinez, G. F. (2016). Antibiofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Materials Science & Engineering C-Materials for Biological Application Engineering, 60 (1), 317-23.
  • Liu, L., Liu, J., Wang, Y., Yan, X., & Sun, D. D. (2011). Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New Journal of Chemistry, 35 (7), 1418-23.
  • Das, M. R., Sarma, R. K., Saikia, R., Kale, V. S., Shelke, M. V., & Sengupta, P. (2011). Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids and Surface B: Biointerfaces, 83 (1), 16-22.
  • Zhu, Z., Su, M., Ma, L., Liu, D., & Wang, Z. (2013). Preparation of graphene oxide–silver nanoparticle nanohybrids with highly antibacterial capability. Talanta, 117, 449-55.
  • Cai X, Lan, M., Lina M, Tan S, Mai W, Zhang Y, Liang Z, Lin Z, Zhang X. (2012). The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and longterm antibacterial activity. Carbon, 50 (10), 3407-15.
  • Veerapandian, M., Zhang, L., Krishnamoorthy, K., & Yun, K. (2013). Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient antibacterials. Nanotechnology, 24 (39), 395-706.
  • Chen, J., Peng, H., Wang, X., Shao, F., Yuan, Z., & Han, H. (2014). Graphene oxide exhibits broadspectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 6 (3), 1879-89.
  • Ocsoy, I., Paret, M. L., Arslan, O. M., Kunwar, S., Chen, T., You, M., & Tan, W. (2013). Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano Journal - ACS Publications, 7 (10), 8972-80.
  • Dilşad Onbaslı, D., Yuvalıcelik, G., Durbilmez, G. D., & Ocsoy, I. (2018). Synthesis and Characterization of Chitosan-Silver Nanoparticle and Chitosan-Silver-Graphene Oxide Nanocomposite with Their Determination of Antimicrobial Activies, Journal of Faculty of Veterinary Medicine, Erciyes University, 15 (3), 208-215.

Synthesis and Characterization of Hemostatic Materials

Year 2025, Volume: 12 Issue: 2, 568 - 588, 30.11.2025
https://doi.org/10.35193/bseufbd.1714511

Abstract

In this study, a very practical hemostatic material that can be used in traumatic situations in various sports, traffic accidents, and almost any situation without medical intervention was studied. Chitin and chitosan derivatives, which have important properties such as tissue regeneration and repair, were used to synthesize the hemostatic material. The nonwoven chitin was processed to produce the fibrillar form of chitin in various ways. First, chitin nanofibril solutions were prepared and defined as input materials in terms of spray, gel, and powder samples. Thus, chitosan was subjected to purification and then dissolved in physiologically compatible acids to obtain chitosan salts. In addition to the solutions obtained, elements that could have significant effects in the blood stasis phases were also included. Finally, the hemostatic materials were characterized in detail by Inductively Coupled Plasma, Differential Thermal Analysis-Thermal Gravimetric Analysis, Fourier Transform Infrared Spectrometry, X-Ray Diffraction, X-Ray Photoelectron Spectroscopy, and Scanning Electron Microscopy. It is suggested that the hemostatic agent produced by all these parameters will be a useful material in trauma situations.

References

  • Özler, M. (2017). Synthesis and Characterization of Nanoscaled Hemostatic Materials. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Nanobilim ve Nanomühendislik Anabilim Dalı, İzmir.
  • McNeilly, B., Samsey, K., Kelly, S., Pennartd, A., & Francis, X. G. (2025). Prehospital Blood Administration in Traumatic Hemorrhagic Shock. JACEP Open, 6 (2), 1-6.
  • Cannon, JW. (2018). Hemorrhagic Shock. The New England Journal of Medicine, 378 (4), 370-379.
  • Schaefer, R. M., Bank, E. A., & Krohmer, J. R., et al. (2024). Removing the barriers to prehospital blood: A roadmap to success. Journal of Trauma and Acute Care Surgery, 97 (2), 138-144.
  • Howard, J. T., Kotwal, R. S., & Stern, C. A., et al. (2019). Use of combat casualty care data to assess the US Military trauma system during the Afghanistan and Iraq conflicts. JAMA Surgery, 154 (7), 600-608.
  • Yu, C., Yong, Z., Fengju, W., Weiwei, M., Xinlin, Y., Peng, L., Jianxin, J., Huimin, T., & Yongfa, Z. (2016). Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as hemostatic wound dressing. Materials Science and Engineering, 63, 18–29.
  • Lalitha, G., Lakshmi, N. R., Swaminathan, S., & Uma, M. K. (2014). Ellagic acid encapsulated chitosan nanoparticles as anti-hemorrhagic agents. Carbohydrate Polymers, 111, 215–221.
  • Bon Kang, G., Sang Jun, P., Min Sup, K., Yong Jin, L., Jong, K., & Chun, K. (2016). Gelatin blending and sonication of chitosan nanofiber mats produce synergistic effects on hemostatic functions. International Journal of Biological Macromolecules, 82, 89–96.
  • Matthew, B. D., William, S., Peter, B., Michael, J. D., Ian, C. M., Erica, H., Tomaz, M., Srinivasa, R. R., & David, R. K. (2015). Hydrophobically-modified chitosan foam: description and hemostatic efficacy. Journal of surgical research, 193, 316-323.
  • Hu-Fan, S., Ai-Zheng, C., Shi-Bin, W., Yong-Qiang, K., Shi-Fu, Y., Yuan-Gang, L., & Wen-Guo, W. (2014). Preparation of Chitosan-Based Haemostatic Sponges by Supercritical. Fluid Technology Materials, 7, 2459-2473.
  • Ji, Y., Patricia W. S., Isaac, A. R., & Gary, L. B. (2012). Chitin nanofibril/polycaprolactone nanocomposite from a nonaqueous medium suspension. Carbohydrate Polymers, 87, 2313–2319.
  • Ji, Y., Kai, L., Xinyuan, S., & Gary L. B. (2014). Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydrate Polymers, 101, 68-74.
  • Levy, M. J., Garfinkel, E. M., & May, R., et al. (2024). Implementation of a prehospital whole blood program: lessons learned. Journal of the American College Emergency Physicians, 5 (2), 131-142.
  • Wang, L. S., Wang, C. Y., Yang, C. H., Hsieh, C.L., Chen, S. Y., Shen, C. Y., Wang, J. J., & Huang, K. S. (2015). Synthesis and Anti-Fungal Effect of Silver Nanoparticles–Chitosan Composite Particles. International Journal of Nanomedicine, 10, 2685–2696.
  • Ashenhurst, J. (2025). Alkanlar ve Adlandırma. Kimya Eğitimi Dergisi, https://www.masterorganicchemistry.com, (2025/10/06).
  • Garnpimol, C. R., Thawatchai, P., & Tamotsu, K. (2002). Moist heat treatment on physicochemical change of chitosan salt films. International Journal of Pharmaceutics, 232, 11-22.
  • Ya-li, J., Patricia, S. W., Isaac, A. R., & Gary, L. B. (2012). Preparation of chitin nanofibril/polycaprolactone nanocomposite from a nonaqueous medium suspension. Carbohydrate Polymers, 87, 2313-2319.
  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16 (10), 2346-253.
  • Suri, S. S., Fenniri, H., & Singh, B. (2007). Nanotechnology-based drug delivery systems. Journal of Occupational Medicine and Toxicology, 2 (16), 1-6.
  • Torres, G. S., Ocio, M., & Lagaron, J. M. (2008). Development of active antimicrobial fiberbased chitosan polysaccharide nanostructures using electrospinning. Engineering in Life Sciences, 8 (3), 303-14.
  • Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339 (16), 693-700.
  • Rajalakshmi, R., Indira, M. Y., Aruna, U., Vinesha, V., Rupangada, V., & Krishna, S. B. (2014). Chitosan nanoparticles - an emerging trend in nanotechnology. International Journal of Drug Delivery, 6 (3), 204-29.
  • Jena, P., Mohanty, S., Mallick, R., Jacob. B., & Sonawane, A. (2012). Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. International Journal of Nanomedicine, 7, 1805-18.
  • Perez, D. M., Alvarado, G. E., Sanchez, S. R., Velasquillo, C., Gonzalez, C., Ganem, R. A., Martinez, C. G., Zavala, A. N., & Martinez, G. F. (2016). Antibiofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Materials Science & Engineering C-Materials for Biological Application Engineering, 60 (1), 317-23.
  • Liu, L., Liu, J., Wang, Y., Yan, X., & Sun, D. D. (2011). Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New Journal of Chemistry, 35 (7), 1418-23.
  • Das, M. R., Sarma, R. K., Saikia, R., Kale, V. S., Shelke, M. V., & Sengupta, P. (2011). Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids and Surface B: Biointerfaces, 83 (1), 16-22.
  • Zhu, Z., Su, M., Ma, L., Liu, D., & Wang, Z. (2013). Preparation of graphene oxide–silver nanoparticle nanohybrids with highly antibacterial capability. Talanta, 117, 449-55.
  • Cai X, Lan, M., Lina M, Tan S, Mai W, Zhang Y, Liang Z, Lin Z, Zhang X. (2012). The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and longterm antibacterial activity. Carbon, 50 (10), 3407-15.
  • Veerapandian, M., Zhang, L., Krishnamoorthy, K., & Yun, K. (2013). Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient antibacterials. Nanotechnology, 24 (39), 395-706.
  • Chen, J., Peng, H., Wang, X., Shao, F., Yuan, Z., & Han, H. (2014). Graphene oxide exhibits broadspectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 6 (3), 1879-89.
  • Ocsoy, I., Paret, M. L., Arslan, O. M., Kunwar, S., Chen, T., You, M., & Tan, W. (2013). Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano Journal - ACS Publications, 7 (10), 8972-80.
  • Dilşad Onbaslı, D., Yuvalıcelik, G., Durbilmez, G. D., & Ocsoy, I. (2018). Synthesis and Characterization of Chitosan-Silver Nanoparticle and Chitosan-Silver-Graphene Oxide Nanocomposite with Their Determination of Antimicrobial Activies, Journal of Faculty of Veterinary Medicine, Erciyes University, 15 (3), 208-215.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Material Characterization
Journal Section Research Article
Authors

Mehmet Özler 0000-0003-0150-0560

Recep Yiğit 0000-0002-6263-0636

Erdal Çelik 0000-0002-5922-5488

Publication Date November 30, 2025
Submission Date June 4, 2025
Acceptance Date July 28, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Özler, M., Yiğit, R., & Çelik, E. (2025). Hemostatik Malzemelerin Sentezi ve Karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(2), 568-588. https://doi.org/10.35193/bseufbd.1714511