Research Article
BibTex RIS Cite

TabNet ile Jet Türü Etiketleme: Bir Makine Öğrenimi Yaklaşımı

Year 2025, Volume: 12 Issue: 2, 589 - 599, 30.11.2025
https://doi.org/10.35193/bseufbd.1728150

Abstract

Yüksek enerjili çarpışmalardan kaynaklanan kolimlenmiş parçacık demetleri olan jetler, Büyük Hadron Çarpıştırıcısı'nda (BHÇ) oldukça yaygındır ve temel etkileşimlerin incelenmesinde kritik bir rol oynar. Bu çalışma, hadronik olarak bozunan üst kuark jetleri ile hafif kuark veya gluon jetlerinin sınıflandırılmasını ele almakta ve bu amaçla jet bileşenlerinin enerji, enine momentum ve bileşenleri gibi düşük seviyeli kinematik özelliklerinden yararlanarak TabNet algoritmasını kullanmaktadır. Verinin yüksek boyutluluğu ile başa çıkmak için boyut indirgeme yöntemi olarak Temel Bileşenler Analizi (TBA) uygulanmakta; TabNet’in dikkat mekanizması ise dinamik olarak en ilgili özellikleri seçmektedir. Model, %99.98 doğruluk, %99.97 duyarlılık (recall) ve 1.0 AUC ile olağanüstü bir sınıflandırma performansı sergilemektedir.

References

  • Tumasyan, A., Adam, W., Andrejkovic, J. W., Bergauer, T., Chatterjee, S., Dragicevic, M., Valle, A. E. D., Fruehwirth, R., Jeitler, M., Krammer, N., Lechner, L., Liko, D., Mikulec, I., Paulitsch, P., Pitters, F. M., Schieck, J., Schöfbeck, R., Spanring, M., ... & Vetens, W. (2022). A new calibration method for charm jet identification validated with proton-proton collision events at √s = 13 TeV. Journal of Instrumentation, 17(03), P03014. https://doi.org/10.1088/1748-0221/17/03/P03014
  • Stoye, M. (2018). Deep learning in jet reconstruction at CMS. Journal of Physics: Conference Series, 1085, 042029. https://doi.org/10.1088/1742-6596/1085/4/042029
  • Tumasyan, A., Adam, W., Andrejkovic, J. W., Bergauer, T., Chatterjee, S., Dragicevic, M., Escalante Del Valle, A., Frühwirth, R., Jeitler, M., Krammer, N., Lechner, L., Liko, D., Mikulec, I., Paulitsch, P., Pitters, F. M., Schieck, J., Schöfbeck, R., Schwarz, D., Templ, S., … &Vetens, W. (2022). Identification of hadronic tau lepton decays using a deep neural network. Journal of Instrumentation, 17(07), P07023. https://doi.org/10.1088/1748-0221/17/07/P07023
  • Collaboration, A. & others. (2017). Identification of jets containing b-hadrons with recurrent neural networks at the ATLAS experiment. ATL-PHYS-PUB-2017-003.
  • Collaboration, A. & others. (2020). Deep sets based neural networks for impact parameter flavour tagging in ATLAS. ATL-PHYS-PUB-2020-014.
  • Sirunyan, A. M., Backhaus, M., Bäni, L., Berger, P., Bianchini, L., Dissertori, G., Dittmar, M., Donegà, M., Dorfer, C., Grab, C., …& others. (2018). Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV. Journal of Instrumentation, 13, P05011.
  • Aad, G., Abbott, B., Abbott, D. C., Abud, A. A., Abeling, K., Abhayasinghe, D. K., Abidi, S. H., AbouZeid, O. S., Abraham, N. L., Abramowicz, H., Abreu, H., Abulaiti, Y., Acharya, B. S., Achkar, B., Adachi, S., Adam, L., Bourdarios, C. A., Adamczyk, L., & Zwalinski, L. (2019). ATLAS b-jet identification performance and efficiency measurement with tt ̅ events in pp collisions at √s = 13 TeV. The European Physical Journal C, 79(11), 970. https://doi.org/10.1140/epjc/s10052-019-7450-8
  • Collaboration, C. & others. (2018). Performance of the DeepJet b tagging algorithm using 41.9 fb-1 of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector. CMS Detector Performance Summary CMS-DP-2018-058.
  • Qu, H., & Gouskos, L. (2020). Jet tagging via particle clouds. Physical Review D, 101(5), 056019. https://doi.org/10.1103/PhysRevD.101.056019
  • Kasieczka, G., Plehn, T., Butter, A., Cranmer, K., Debnath, D., Dillon, B. M., Fairbairn, M., Faroughy, D. A., Fedorko, W., Gay, C., Gouskos, L., Kamenik, J. F., Komiske, P., Leiss, S., Lister, A., Macaluso, S., Metodiev, E., Moore, L., Nachman, B., … & Varma, S. (2019). The Machine Learning landscape of top taggers. SciPost Physics, 7(1), 014. https://doi.org/10.21468/SciPostPhys.7.1.014
  • Arganda, E., Medina, A. D., Perez, A. D., & Szynkman, A. (2022). Towards a method to anticipate dark matter signals with deep learning at the LHC. SciPost Physics, 12(2), 063. https://doi.org/10.21468/SciPostPhys.12.2.063
  • Baldi, P., Sadowski, P., & Whiteson, D. (2014). Searching for exotic particles in high-energy physics with deep learning. Nature Communications, 5, 4308. https://doi.org/10.1038/ncomms5308
  • Celik, A. (2023). A fast and time-efficient machine learning approach to dark matter searches in compressed mass scenario. The European Physical Journal C, 83(12), 1150.
  • Celik, A. (2024). Exploring hidden signal: Fine-tuning ResNet-50 for dark matter detection. Computer Physics Communications, 305, 109348. https://doi.org/10.1016/j.cpc.2024.109348
  • Celik, A. (2024). Deep Learning Approaches for BSM Physics: Evaluating DNN and GNN Performance in Particle Collision Event Classification. Acta Physica Polonica B, 55(10), 1. https://doi.org/10.5506/APhysPolB.55.10-A2
  • Bişkin, O. T., & Çelik, A. (2025). Transforming tabular data into graphs for GNN-driven classification of BSM and standard model events in high-energy collisions. Nuclear Physics B, 1018, 117064. https://doi.org/10.1016/j.nuclphysb.2025.117064
  • Arik, S. Ö., & Pfister, T. (2021). TabNet: Attentive Interpretable Tabular Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), 6679–6687. https://doi.org/10.1609/aaai.v35i8.16826
  • Almeida, L. G., Backovic, M., Cliche, M., Lee, S. J., & Perelstein, M. (2015). Playing Tag with ANN: Boosted Top Identification with Pattern Recognition (No. arXiv:1501.05968). arXiv. https://doi.org/10.48550/arXiv.1501.05968
  • de Oliveira, L., Kagan, M., Mackey, L., Nachman, B., & Schwartzman, A. (2016). Jet-images—Deep learning edition. Journal of High Energy Physics, 2016(7), 69. https://doi.org/10.1007/JHEP07(2016)069
  • Bols, E. S., Kieseler, J., Verzetti, M., Stoye, M., & Stakia, A. (2020). Jet Flavour Classification Using DeepJet. Journal of Instrumentation. https://doi.org/10.1088/1748-0221/15/12/p12012
  • Furuichi, A., Lim, S. H., & Nojiri, M. M. (2024). Jet classification using high-level features from anatomy of top jets. Journal of High Energy Physics, 2024(7), 146. https://doi.org/10.1007/JHEP07(2024)146
  • Sjöstrand, T., Ask, S., Christiansen, J. R., Corke, R., Desai, N., Ilten, P., Mrenna, S., Prestel, S., Rasmussen, C. O., & Skands, P. Z. (2015). An introduction to PYTHIA 8.2. Computer Physics Communications, 191, 159–177. https://doi.org/10.1016/j.cpc.2015.01.024
  • de Favereau, J., Delaere, C., Demin, P., Giammanco, A., Lemaître, V., Mertens, A., Selvaggi, M., & The DELPHES 3 Collaboration. (2014). DELPHES 3: A modular framework for fast simulation of a generic collider experiment. Journal of High Energy Physics, 2014(2), 57. https://doi.org/10.1007/JHEP02(2014)057
  • Kasieczka, G., Plehn, T., Thompson, J., & Russel, M. (2019). Top Quark Tagging Reference Dataset (Version v0 (2018_03_27)) [Dataset]. Zenodo. https://doi.org/10.5281/ZENODO.2603256
  • McKinney, W. (2010). Data Structures for Statistical Computing in Python. 56–61. https://doi.org/10.25080/Majora-92bf1922-00a
  • Pedregosa, F. (2011). Scikit-learn: Machine learning in python Fabian. Journal of Machine Learning Research, 12, 2825.
  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417–441. https://doi.org/10.1037/h0071325
  • Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559–572. https://doi.org/10.1080/14786440109462720
  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … & Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information Processing Systems, 32. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

TabNet for Jet Flavor Tagging: A Machine Learning Approach

Year 2025, Volume: 12 Issue: 2, 589 - 599, 30.11.2025
https://doi.org/10.35193/bseufbd.1728150

Abstract

Jets, collimated particle sprays from high-energy collisions, are abundant at the Large Hadron Collider and critical for studying fundamental interactions. This study addresses the classification of hadronically decaying top quark jets and light quark or gluon jets using TabNet algorithm with leveraging low-level kinematic features of the jet constituents such as energy, transverse momentum, and components. To handle the high dimensionality of the data, Principal Component Analysis is applied for dimensionality reduction, while TabNet’s attention-based mechanism dynamically selects relevant features. The model achieves exceptional performance, with an accuracy of 99.98%, a recall of 99.97%, and an AUC of 1.0, demonstrating an outstanding classification performance.

References

  • Tumasyan, A., Adam, W., Andrejkovic, J. W., Bergauer, T., Chatterjee, S., Dragicevic, M., Valle, A. E. D., Fruehwirth, R., Jeitler, M., Krammer, N., Lechner, L., Liko, D., Mikulec, I., Paulitsch, P., Pitters, F. M., Schieck, J., Schöfbeck, R., Spanring, M., ... & Vetens, W. (2022). A new calibration method for charm jet identification validated with proton-proton collision events at √s = 13 TeV. Journal of Instrumentation, 17(03), P03014. https://doi.org/10.1088/1748-0221/17/03/P03014
  • Stoye, M. (2018). Deep learning in jet reconstruction at CMS. Journal of Physics: Conference Series, 1085, 042029. https://doi.org/10.1088/1742-6596/1085/4/042029
  • Tumasyan, A., Adam, W., Andrejkovic, J. W., Bergauer, T., Chatterjee, S., Dragicevic, M., Escalante Del Valle, A., Frühwirth, R., Jeitler, M., Krammer, N., Lechner, L., Liko, D., Mikulec, I., Paulitsch, P., Pitters, F. M., Schieck, J., Schöfbeck, R., Schwarz, D., Templ, S., … &Vetens, W. (2022). Identification of hadronic tau lepton decays using a deep neural network. Journal of Instrumentation, 17(07), P07023. https://doi.org/10.1088/1748-0221/17/07/P07023
  • Collaboration, A. & others. (2017). Identification of jets containing b-hadrons with recurrent neural networks at the ATLAS experiment. ATL-PHYS-PUB-2017-003.
  • Collaboration, A. & others. (2020). Deep sets based neural networks for impact parameter flavour tagging in ATLAS. ATL-PHYS-PUB-2020-014.
  • Sirunyan, A. M., Backhaus, M., Bäni, L., Berger, P., Bianchini, L., Dissertori, G., Dittmar, M., Donegà, M., Dorfer, C., Grab, C., …& others. (2018). Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV. Journal of Instrumentation, 13, P05011.
  • Aad, G., Abbott, B., Abbott, D. C., Abud, A. A., Abeling, K., Abhayasinghe, D. K., Abidi, S. H., AbouZeid, O. S., Abraham, N. L., Abramowicz, H., Abreu, H., Abulaiti, Y., Acharya, B. S., Achkar, B., Adachi, S., Adam, L., Bourdarios, C. A., Adamczyk, L., & Zwalinski, L. (2019). ATLAS b-jet identification performance and efficiency measurement with tt ̅ events in pp collisions at √s = 13 TeV. The European Physical Journal C, 79(11), 970. https://doi.org/10.1140/epjc/s10052-019-7450-8
  • Collaboration, C. & others. (2018). Performance of the DeepJet b tagging algorithm using 41.9 fb-1 of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector. CMS Detector Performance Summary CMS-DP-2018-058.
  • Qu, H., & Gouskos, L. (2020). Jet tagging via particle clouds. Physical Review D, 101(5), 056019. https://doi.org/10.1103/PhysRevD.101.056019
  • Kasieczka, G., Plehn, T., Butter, A., Cranmer, K., Debnath, D., Dillon, B. M., Fairbairn, M., Faroughy, D. A., Fedorko, W., Gay, C., Gouskos, L., Kamenik, J. F., Komiske, P., Leiss, S., Lister, A., Macaluso, S., Metodiev, E., Moore, L., Nachman, B., … & Varma, S. (2019). The Machine Learning landscape of top taggers. SciPost Physics, 7(1), 014. https://doi.org/10.21468/SciPostPhys.7.1.014
  • Arganda, E., Medina, A. D., Perez, A. D., & Szynkman, A. (2022). Towards a method to anticipate dark matter signals with deep learning at the LHC. SciPost Physics, 12(2), 063. https://doi.org/10.21468/SciPostPhys.12.2.063
  • Baldi, P., Sadowski, P., & Whiteson, D. (2014). Searching for exotic particles in high-energy physics with deep learning. Nature Communications, 5, 4308. https://doi.org/10.1038/ncomms5308
  • Celik, A. (2023). A fast and time-efficient machine learning approach to dark matter searches in compressed mass scenario. The European Physical Journal C, 83(12), 1150.
  • Celik, A. (2024). Exploring hidden signal: Fine-tuning ResNet-50 for dark matter detection. Computer Physics Communications, 305, 109348. https://doi.org/10.1016/j.cpc.2024.109348
  • Celik, A. (2024). Deep Learning Approaches for BSM Physics: Evaluating DNN and GNN Performance in Particle Collision Event Classification. Acta Physica Polonica B, 55(10), 1. https://doi.org/10.5506/APhysPolB.55.10-A2
  • Bişkin, O. T., & Çelik, A. (2025). Transforming tabular data into graphs for GNN-driven classification of BSM and standard model events in high-energy collisions. Nuclear Physics B, 1018, 117064. https://doi.org/10.1016/j.nuclphysb.2025.117064
  • Arik, S. Ö., & Pfister, T. (2021). TabNet: Attentive Interpretable Tabular Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), 6679–6687. https://doi.org/10.1609/aaai.v35i8.16826
  • Almeida, L. G., Backovic, M., Cliche, M., Lee, S. J., & Perelstein, M. (2015). Playing Tag with ANN: Boosted Top Identification with Pattern Recognition (No. arXiv:1501.05968). arXiv. https://doi.org/10.48550/arXiv.1501.05968
  • de Oliveira, L., Kagan, M., Mackey, L., Nachman, B., & Schwartzman, A. (2016). Jet-images—Deep learning edition. Journal of High Energy Physics, 2016(7), 69. https://doi.org/10.1007/JHEP07(2016)069
  • Bols, E. S., Kieseler, J., Verzetti, M., Stoye, M., & Stakia, A. (2020). Jet Flavour Classification Using DeepJet. Journal of Instrumentation. https://doi.org/10.1088/1748-0221/15/12/p12012
  • Furuichi, A., Lim, S. H., & Nojiri, M. M. (2024). Jet classification using high-level features from anatomy of top jets. Journal of High Energy Physics, 2024(7), 146. https://doi.org/10.1007/JHEP07(2024)146
  • Sjöstrand, T., Ask, S., Christiansen, J. R., Corke, R., Desai, N., Ilten, P., Mrenna, S., Prestel, S., Rasmussen, C. O., & Skands, P. Z. (2015). An introduction to PYTHIA 8.2. Computer Physics Communications, 191, 159–177. https://doi.org/10.1016/j.cpc.2015.01.024
  • de Favereau, J., Delaere, C., Demin, P., Giammanco, A., Lemaître, V., Mertens, A., Selvaggi, M., & The DELPHES 3 Collaboration. (2014). DELPHES 3: A modular framework for fast simulation of a generic collider experiment. Journal of High Energy Physics, 2014(2), 57. https://doi.org/10.1007/JHEP02(2014)057
  • Kasieczka, G., Plehn, T., Thompson, J., & Russel, M. (2019). Top Quark Tagging Reference Dataset (Version v0 (2018_03_27)) [Dataset]. Zenodo. https://doi.org/10.5281/ZENODO.2603256
  • McKinney, W. (2010). Data Structures for Statistical Computing in Python. 56–61. https://doi.org/10.25080/Majora-92bf1922-00a
  • Pedregosa, F. (2011). Scikit-learn: Machine learning in python Fabian. Journal of Machine Learning Research, 12, 2825.
  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417–441. https://doi.org/10.1037/h0071325
  • Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559–572. https://doi.org/10.1080/14786440109462720
  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … & Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information Processing Systems, 32. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
There are 29 citations in total.

Details

Primary Language English
Subjects Particle and High Energy Physics (Other)
Journal Section Research Article
Authors

Ali Çelik 0000-0001-8218-6512

Publication Date November 30, 2025
Submission Date June 26, 2025
Acceptance Date October 26, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Çelik, A. (2025). TabNet for Jet Flavor Tagging: A Machine Learning Approach. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(2), 589-599. https://doi.org/10.35193/bseufbd.1728150