Year 2020, Volume 9 , Issue 1, Pages 13 - 25 2020-02-05

Investigation of Teacher Knowledge of Elementary Mathematics Teachers: Case of Probability
Ortaokul Matematik Öğretmenlerinin Öğretmen Bilgilerinin İncelenmesi: Olasılık Örneği

Mehmet Akif KILIÇ [1] , Mesut Öztürk [2] , Betül Küçük Demir [3]


This study was conducted in order to examine the content knowledge of mathematics teachers and to determine their views on probability issues. In the study, the case study model was used from the qualitative research designs. The participants of the study were six elementary mathematics teachers who is Turkey's north-east province who served. Teachers participating in the study were selected by quota sampling method. The criteria of the study were determined as teachers' masters and professional seniority. The data of the study were collected by semi-structured interview form. In the form of semi-structured interviews, teachers were asked questions of cognitive and affective questions related to the adequacy of probability information. Content analysis method was used in the data analysis. As a result of the analyzes show that the teachers considered the probability content knowledge is sufficient, but did not find the pedagogical content knowledge sufficient. Another result of the study is that some teachers do not know the concept of discrete event and independent event. Therefore, teachers have difficulty in distinguishing between discrete event and independent event concepts.   

Bu çalışma ortaokul matematik öğretmenlerinin olasılık konusundaki alan bilgilerini incelemek ve olasılık konularına yönelik görüşlerini belirlemek amacıyla yapılmıştır. Çalışmada nitel araştırma desenlerinden durum çalışması modeli kullanılmıştır. Çalışmaya Türkiye’nin kuzey doğusunda yer alan bir ilde görev yapan altı ortaokul matematik öğretmeni katılmıştır. Çalışmaya katılan öğretmenler ölçüt örnekleme yöntemiyle seçilmiştir. Çalışmada ölçüt olarak öğretmenlerin yüksek lisans yapma durumları ve mesleki kıdemleri temel alınmıştır. Çalışmanın verileri yarı yapılandırılmış görüşme formu ile toplanmıştır. Yarı yapılandırılmış görüşme formunda öğretmenlere olasılık bilgilerinin yeterliğine yönelik bilişsel ve duyuşsal alan soruları sorulmuştur. Çalışmada toplanan verileri içerik analizi uygulanmıştır. Yapılan analizler sonucunda öğretmenlerin olasılık konusunda alan bilgilerini yeterli gördükleri ancak pedagojik alan bilgilerini yeterli bulmadıkları belirlenmiştir. Çalışmada ulaşılan bir diğer sonuç ise bazı öğretmenlerin ayrık olay ve bağımsız olayı kavramsal olarak bilmedikleridir. Bu nedenle öğretmenler ayrık olay ve bağımsız olay kavramlarını ayırt etmede güçlük yaşamaktadır.

  • Akdeniz, F. (2007). Olasılık ve istatistik [Probability and statistics]. Adana: Adana Nobel Kitabevi.
  • Akkoç, H., & Yeşildere-İmre, S. (2015). Teknolojik pedagojik alan bilgisi temelli olasılık ve istatistik öğretimi [Technological pedagogical content knowledge based probability and statistics teaching]. Ankara: Pegem Akademi.
  • Altun, M. (2015). Eğitim fakülteleri ve lise matematik öğretmenleri için: Liselerde matematik öğretimi [For mathematics teachers in education faculties and high school: Mathematics teaching in high schools]. Bursa: Aktüel Alfa Akademi Bas. Yay. Dağ. Ltd. Şti.
  • Argün, Z., Arıkan, A., Bulut, S., & Halıcıoğlu, S. (2014). Temel matematik kavramların künyesi [Identity of basic mathematical concepts]. Ankara: Gazi Kitabevi Tic. Ltd. Şti.
  • Baki, A. (2018). Matematiği öğretme bilgisi [Knowledge of mathematics teaching]. Ankara: Pegem Akademi.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
  • Baştürk, S., & Dönmez, G. (2011). Examining pre-service teachers' pedagogical content knowledge with regard to curriculum knowledge. International Online Journal of Educational Sciences, 3(2), 743-775.
  • Bulut, S., & Şahin, B. (2003). Investigation of secondary school students’ and prospective mathematics teachers’ achievement on probability concepts. Education and Science, 28(130), 3-7.
  • Çelik, D., & Güneş, G. (2007). The examination of 7th, 8th and 9th grades students’ understanding and misconceptions on probability concept. Milli Eğitim Dergisi, 173, 361-375.
  • Danişman, Ş., & Tanışlı, D. (2017). Examination of mathematics teachers’ pedagogical content knowledge of probability. Malaysian Online Journal of Educational Sciences, 5(2), 16-34.
  • Dekking, F. M., Kraaikamp, C., Lopuhaä, H. P., & Meester, L. E. (2005). A modern introduction to probability and statistics: Understanding why and how. London: Springer Science+Business Media. https://doi.org/10.1007/1-84628-168-7
  • Demir, H. (2016). Olasılık ve istatistiğe giriş [Introduction of probability and statistics]. Ankara: Pegem Akademi. https://doi.org/10.14527/9786053184706
  • DeVaul, L. (2017). A study of strengthening secondary mathematics teachers' knowledge of statistics and probability via professional development. Las Vegas: University of Nevada.
  • Gökkurt, B., Şahin, Ö., & Soylu, Y. (2012). Matematik öğretmenlerinin matematiksel alan bilgileri ile pedagojik alan bilgileri arasındaki ilişkinin incelenmesi. The Journal of Academic Social Science Studies, 5(8), 997-1012.
  • Gökkurt-Özdemir, B. (2017). Content knowledge of pre-service teachers regarding concepts on the probability: discrete-continuous events, dependent-independent events. Journal of Social Sciences of Mus Alparslan University, 5(3), 693-713.
  • Klymchuk, S., & Kachapova, F. (2012). Paradoxes and counterexamples in teaching and learning of probability at university. International Journal of Mathematical Education in Science and Technology, 43(6), 803-811. https://doi.org/10.1080/0020739X.2011.633631
  • Lim, W., & Guerra, P. (2013). Using a pedagogical content knowledge assessment to inform a middle grades mathematics teacher preparation program. Georgia Educational Researcher, 10(2), 1-15. https://doi.org/10.20429/ger.2013.100201
  • Lipschhutz, S., & Lipson, M. (2013). Olasılık [Probability]. (T. Khaniyev (Hanalioğlu), Çev.) Ankara: Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. şti.
  • Memnun, D. S. (2008). Olasılık kavramlarının öğrenilmesinde karşılaşılan zorluklar, bu kavramların öğrenilememe nedenleri ve çözüm önerileri [Difficulties of learning probability concepts the reasons why these concepts cannot be learned and suggestions for solution]. The Inonu University Journal of the Faculty of Education, 9(15), 89-101.
  • Miles, M. B., & Huberman, A. M. (2015). Genişletilmiş bir kaynak: Nitel veri analizi [An expanded sourcebook: Qualitative data analysis]. (S. Akbaba-Altun, & A. Ersoy, Çev.) Ankara: Pegem Akademi.
  • Munisamy, S., & Doraisamy, L. (1998). Levels of understanding of probability concepts among secondary school pupils. International Journal of Mathematical Education in Science and Technology, 29(1), 39-45. https://doi.org/10.1080/0020739980290104
  • O'Connell, A. A. (1999). Understanding the nature of errors in probability problem-solving. Educational Research and Evaluation, 5(1), 1-21. https://doi.org/10.1076/edre.5.1.1.3887
  • Öztürk, M., & Kaplan, A. (2019). Cognitive Analysis of Constructing Algebraic Proof Processes: A Mixed Method Research. Education and Science, 44(197), 25-64.
  • Rosenholtz, S. J. (1985). Political myths about education reform: Lessons from research on teaching. Phi Delta Kappan, 66(5), 349-355.
  • Shin, B. (2011). An analysis of teachers' pedagogical content knowledge on probability. 35th Annual Conference of the International-Group-for-the-Psychology-of-Mathematics-Education (PME) (pp. 161-168). Ankara: Int Grp Psychol Math Educ.
  • Staley, K. N. (2004). Tracing the development of understanding rate of change: A case study of changes in a pre-service teacher’s pedagogical content knowledge. Raleigh, NC: North Carolina State University.
  • Stevens, T., Harris, G., Aguirre-Munoz, Z., & Cobbs, L. (2009). A case study approach to increasing teachers’ mathematics knowledge for teaching and strategies for building students’ maths self-efficacy. International Journal of Mathematical Education in Science and Technology, 40(7), 903-914. https://doi.org/10.1080/00207390903199269
  • Vysotskiy, I. R. (2018). Popularization of probability theory and statistics in school through intellectual competitions. 13th International Congress on Mathematical Education (ICME) (pp. 719-730). Soc Didact Math, Hamburg: Int Commiss Math Instruct. https://doi.org/10.1007/978-3-319-72170-5_40
  • Yanpar-Yelken, T., Sancar-Tokmak, H., Özgelen, S., & İncikabı, L. (2013). Fen ve matematik eğitiminde teknolojik pedagojik alan bilgisi temelli öğretim tasarımları [Technological pedagogical content knowledge based teaching designs in science and mathematics education]. Ankara: Anı Yayıncılık.
  • Yıldırım, A., & Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri [Qualitative research methods in the social sciences]. Ankara: Seçkin Yayıncılık San. ve Tic. A.Ş.
Primary Language en
Subjects Education, Special
Journal Section Makaleler / Articles
Authors

Orcid: 0000-0003-0706-7032
Author: Mehmet Akif KILIÇ
Institution: BAYBURT MİLLİ EĞİTİM MÜDÜRLÜĞÜ, ERDEM BEYAZIT İMAM-HATİP ORTAOKULU
Country: Turkey


Orcid: 0000-0002-2163-3769
Author: Mesut Öztürk (Primary Author)
Institution: BAYBURT ÜNİVERSİTESİ, BAYBURT EĞİTİM FAKÜLTESİ
Country: Turkey


Orcid: 0000-0002-6752-6803
Author: Betül Küçük Demir
Institution: BAYBURT ÜNİVERSİTESİ, BAYBURT EĞİTİM FAKÜLTESİ
Country: Turkey


Dates

Publication Date : February 5, 2020

APA KILIÇ, M , Öztürk, M , Küçük Demir, B . (2020). Investigation of Teacher Knowledge of Elementary Mathematics Teachers: Case of Probability. Bartın University Journal of Faculty of Education , 9 (1) , 13-25 . Retrieved from https://dergipark.org.tr/en/pub/buefad/issue/51796/541323