Research Article
BibTex RIS Cite

Year 2025, Volume: 14 Issue: 2, 455 - 466, 30.04.2025
https://doi.org/10.14686/buefad.1452974

Abstract

Bu araştırma, üstbilişsel farkındalığın (ÜF), matematiğin doğasına ilişkin inançlar (MDİİ) ile matematiksel dayanıklılık (MD) arasındaki bağlantıya nasıl aracılık ettiğini araştırmayı amaçlamaktadır. Bu anlamda çalışmanın amacına uygun olarak nicel araştırma yöntemlerinden kesitsel anket modelinin kullanımı tercih edilmiştir. Çalışma 162 matematik öğretmeni adayından oluşan bir örneklemi içermektedir ve veri MDİİ Ölçeği, ÜF Ölçeği ve MD Ölçeği'ni içeren çevrimiçi formlar kullanılarak toplanmıştır. MDİİ ile MD arasındaki korelasyonda ÜF'nin aracılık rolünü araştırmak için aracılık analizleri yapılmıştır. Bulgular bu değişkenler arasında önemli ilişkiler olduğunu ortaya koymuştur. Bu durum ÜF’ın MDİİ ile MD arasındaki ilişkide kısmen aracılık ettiğini göstermiştir. Çalışma, MD'ı geliştirmede bireylerin matematik hakkındaki inançları ve üstbilişsel farkındalıklarını dikkate almanın önemini ortaya koymuştur. Bu anlamda öğretmenler, çeşitli stratejiler aracılığıyla öğrencilerin matematik hakkındaki inançlarını ve üstbilişsel farkındalıklarını geliştirerek matematiksel dayanıklılıklarını artırmayı amaçlayan sınıf içi uygulamaları gerçekleştirebilir.

Ethical Statement

Bu çalışma bu derginin dışında başka bir dergide inceleme altında değildir. Sadece bu dergide inceleme altındadır.

Supporting Institution

yok

Thanks

yok

References

  • Akın, A., Abacı, R. & Çetin, B. (2007). Bilişötesi farkındalık envanteri’nin türkçe formunun geçerlik ve güvenirlik çalışması. Kuram ve Uygulamada Eğitim Bilimleri, 7(2), 655–680.
  • Akyıldız, P. & Dede, Y. (2019). İlköğretim matematik öğretmen adayları için matematiğin doğasına yönelik inanç ölçeği (MDYİÖ): Bir keşfedici karma desen çalışması. Adıyaman Üniversitesi Eğitim Bilimleri Dergisi, 9(1), 69-98. http://dx.doi.org/10.17984/adyuebd.539351
  • Ariyanto, L., Herman, T., Sumarmo, U., & Suryadi, D. (2017). Developing mathematical resilience of prospective math teachers. In Journal of Physics: Conference Series, 895(1), 1-7, IOP Publishing. https://doi.org/10.1088/1742-6596/895/1/012062.
  • Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173
  • Baş, F., Işık, A., Çakmak Gürel, Z., Okur, M., & Bekdemir, M. (2015). İlköğretim matematik öğretmen adaylarının matematığın doğasına ilışkın düşüncelerı: Bır yapısal eşıtlık modelı incelemesı1. Kastamonu Üniversitesi Kastamonu Eğitim Dergisi, 23(1), 123-140.
  • Benard, B. (1996). The foundations of the resiliency paradigm. Premier Issue
  • Bland, L. C., Sowa, C. J., & Callahan, C. M. (1994). An overview of resilience in gifted children. Roeper Review, 17(2), 77-80.
  • Brantlinger, E. (1996). Influence of preservice teachers' beliefs about pupil achievement on attitudes toward inclusion. Teacher Education and Special Education, 19(1), 17-33.
  • Brown, A. L. (1978). Knowing When, where, and how to remember: A problem of metacognition. In R. Glasser (Ed.), Advances in instructional psychology. Hillsdale, NJ: Lawrence Erbaum.
  • Çelik, H. C., & Arslan, İ. (2022). Matematik başarısının yordanması: Matematiksel üstbiliş ve problem kurma öz-yeterliğinin rolü. Journal of Uludag University Faculty of Education, 35(2), 385-406. https://doi.org/10.19171/uefad.1059329
  • Dede, Y., & Karakuş, F. (2014). Matematik öğretmeni adaylarının matematiğe yönelik inançları üzerinde öğretmen eğitimi programlarının etkisi. Kuram ve Uygulamada Eğitim Bilimleri, 14(2), 791-809.
  • Desoete, A., & Ozsoy, G. (2009). Introduction: Metacognition, More than the Lognes Monster?. Online Submission, 2(1), 1-6.
  • Desoete, A., & Veenman, M. (2006). Metacognition in mathematics: Critical issues on nature, theory, assessment and treatment. In Metacognition in mathematics education (pp. 1-10).
  • Ernest, P. (1989). The knowledge, beliefs, and attitudes of the mathematics teacher: A model. Journal of Education for Teaching, 15(1), 13-33.
  • Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole Publishing Co.
  • Flavell. J. H. (1987). Speculation about the nature and development of metacognition. Metacognition, motivation, and understanding, F. Weinert and R. Kluwe, Lawrence Erlbaum, New Jersey, 21-29.
  • Flavell, J. H. (1976) Metacognitive aspects of problem solving. L. Resnick (Ed.), The nature of intelligence içinde (s. 231-236), Hillsdale, NJ: Erlbaum. 75
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring a new area of cognitive-developmental inquiry, American Psychologist, 34(10), 906-911. doi:10.1037/0003-066X.34.10.906
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (Vol. 7, p. 429). New York: McGraw-hill.
  • Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK. Re-examining pedagogical content knowledge in science education, 28-42.
  • Gürefe, N., & Akçakin, V. (2018). The Turkish Adaptation of the Mathematical Resilience Scale: Validity and Reliability Study. Journal of Education and Training Studies, 6(4), 38-47. https://doi.org/10.11114/jets.v6i3.2992
  • Hayes, A. F. (2017). Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. Guilford Publications.
  • Jew, C. L., Green, K. E., & Kroger, J. (1999). Development and validation of a measure of resiliency. Measurement and evaluation in counseling and development, 32(2), 75-89.
  • Johnston-Wilder, S., & Lee, C. (2010). Developing mathematical resilience. Berea Conference Paper, University of Warwick, UK. Retrieved from http://oro.open.ac.uk/24261/2/3C23606C.pdf
  • Karakelle, S. (2012). Üst bilişsel farkındalık, zekâ, problem çözme algısı ve düşünme ihtiyacı arasındaki bağlantılar. Eğitim ve Bilim, 37(164).
  • Kooken, J., Welsh, M. E., McCoach, D. B., Johnston-Wilder, S., & Lee, C. (2016). Development and validation ofthe mathematical resilience scale. Measurement and Evaluation in Counseling and Development, 49(3), 217-242. https://doi.org/10.1177/0748175615596782
  • Kroll, D. L. & Miller, T. (1993). Insights from research on mathematical problem solving in the middle grades. D.T. Owens (Ed.). Research ideas for the classroom: Middle grades mathematics içinde (s. 58-77). NY: Macmillan.
  • Lee, C. & Johnston-Wilder, S. (2017). The Construct of Mathematical Resilience. (U. XolocotzinEligio Ed.) Understanding Emotions in Mathematical Thinking and Learning. Elsevier, pp. 269–291. https://doi.org/10.1016/B978-0-12-802218-4.00010-8.
  • Lester Jr, F. K., & Garofalo, J. (1987). The Influence of Affects, Beliefs, and Metacognition on Problem Solving Behavior: Some Tentative Speculations.
  • Ma, X., & Kishor, N. (1997). Assessing the Relationship between Attitude toward Mathematics and Achievement in Mathematics: A Meta-Analysis. Journal for Research in Mathematics Education, 28, 26-47.
  • MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99-128. https://doi.org/10.1207/s15327906mbr3901_4
  • Marangoz, D. (2024). Ortaokul öğrencilerinin matematiksel dayanıklıklarının incelenmesi ve matematik başarısı ile ilişkisi. EKEV Akademi Dergisi, (97), 83-98. https://doi.org/10.17753/sosekev.1403892.
  • Masten, A. S. (2001). Ordinary magic: Resilience processes in development. American psychologist, 56(3), 227.
  • McLeod, D. B., & McLeod, S. H. (2002). Synthesis—beliefs and mathematics education: Implications for learning, teaching, and research. In G. C. Leder, E. Pehkonen, G. Törner (Eds.), In Beliefs: A hidden variable in mathematics education (pp. 115-123). Springer.
  • Morkoyunlu, Z., & Saltık Ayhanöz, G. (2023). Ortaokul öğrencilerinin matematiksel inancının ile matematiksel dayanıklılığına etkisinin incelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 24(1), 426-450. https://doi.org/10.29299/kefad.1189717.
  • National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. NCTM.
  • OECD (2013). PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy. OECD Publishing. http://dx.doi.org/10.1787/9789264190511-en.
  • Özsoy, G. (2007). İlköğretim beşinci sınıfta üstbiliş stratejileri öğretiminin problem çözme başarısına etkisi. Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Palsdottir, G. (2007). Girls’ beliefs about the learning of mathematics. The Montana Mathematics Enthusiast, Monograph 3, 117-124.
  • Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of educational research, 62(3), 307-332.
  • Pehkonen, E. (2004). State-of-art in mathematical beliefs research. In M. Niss (Ed.), Proceedings of the 10th International Congress on Mathematical Education (pp. 1-14). Roskilde, Roskilde University
  • Pekdemir, Ü. (2019). The Validity and Reliability of the Academic Resilience in Mathematics Scale Turkish Form. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 10(1), 217-231.
  • Peker, M. & Mirasyedioğlu, Ş. (2003). Lise 2. sınıf öğrencilerinin matematik dersine yönelik tutumları ve başarıları arasındaki ilişki. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 14(14), 157-166.
  • Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. Second handbook of research on mathematics teaching and learning, 1, 257-315.
  • Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in college students. Educational Psychology Review, 16(4), 385-407. https://doi.org/10.1007/s10648-004-0006-x
  • Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Practice, 41(4), 219-225. https://doi.org/10.1207/s15430421tip4104_3
  • Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717-731.
  • Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16(2), 93–115. https://doi.org/10.1037/a0022658
  • Rak, C. F., & Patterson, L. E. (1996). Promoting resilience in at‐risk children. Journal of counseling & development, 74(4), 368-373.
  • Raymond, A. M. (1997). Inconsistency between a beginning elementary school teacher's mathematics beliefs and teaching practice. Journal for research in mathematics education, 28(5), 550-576.
  • Schraw, G. & Sperling-Dennison, R. (1994). Assessing mathematical awareness. Contemporary Educational Psychology, 19, 460-470.
  • Schunk, D. H. (1989). Self-efficacy and achievement behaviors. Educational Psychology Review, 1(3), 173-208
  • Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of education, 196(2), 1-38. https://doi.org/10.1177/002205741619600202
  • Silver, E. A. (1985). Teaching and learning mathematical problem solving: Multiple research perspectives. Hillsdale, Erlbaum.
  • Steinbring, H. (1998). Elements of epistemological knowledge for mathematics teachers. Journal of Mathematics Teacher Education, 1(2), 157-189.
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.), Allyn and Bacon.
  • Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., & Peck, R. i Rowley G. (2008). Policy, practice, and readiness to teach primary and secondary mathematics in, 17.
  • Tay, L. Y., Chan, M., Chong, S. K., Tan, J. Y., & Aiyoob, T. B. (2024). Learning of mathematics: A metacognitive experiences perspective. International Journal of Science and Mathematics Education, 22(3), 561-583. http://dx.doi.org/10.1007/s10763-023-10385-8
  • Thompson, A. G. (1992). Teachers’ beliefs and conceptions: A synthesis of the research In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (s. 127-146), New York: Macmillian.
  • Underhill, R. (1988). Focus on Research into Practice in Diagnostic and Prescriptive Mathematics: Mathematics Learners' Beliefs: A Review. Focus on learning problems in mathematics, 10(1), 55-69.
  • Van de Walle, J. A., Karp, K. S., Lovin, L. H., & Bay-Williams, J. M. (2013). Teaching Student-Centered Mathematics: Developmentally Appropriate Instruction for Grades 3-5 (Volume II) (Vol. 2). Pearson Higher Ed.
  • Vance, E. & Sanchez, H. (1998). Creating aservice system that builds resiliency. NC Department of Health and Human Services

The Mediating Role of Metacognitive Awareness in the Relationship between Middle School Preservice Mathematics Teachers’ Beliefs About the Nature of Mathematics and Mathematical Resilience

Year 2025, Volume: 14 Issue: 2, 455 - 466, 30.04.2025
https://doi.org/10.14686/buefad.1452974

Abstract

This research seeks to investigate how metacognitive awareness (MA) mediates the connection between beliefs about the nature of mathematics (BNM) and mathematical resilience (MR). In this sense, in accordance with the purpose of the study, the use of the cross-sectional survey model, one of the quantitative research methods, was preferred. The study involves a sample of 162 preservice mathematics teachers, and data were gathered using online forms incorporating the BNM Scale, MA Scale, and MR Scale. The mediation model analyses were performed to investigate the mediating role of MA in the correlation between BNM and MR. The findings reveal significant associations among these variables, suggesting that MA partially serves as a mediator in the relationship between BNM and MR. The study underscores the significance of taking into account individuals' beliefs about mathematics and their MA in fostering MR. In this sense, the teachers can carry out classroom practices that aim to increase students' mathematical endurance by improving their beliefs and metacognitive awareness about mathematics through various strategies.

References

  • Akın, A., Abacı, R. & Çetin, B. (2007). Bilişötesi farkındalık envanteri’nin türkçe formunun geçerlik ve güvenirlik çalışması. Kuram ve Uygulamada Eğitim Bilimleri, 7(2), 655–680.
  • Akyıldız, P. & Dede, Y. (2019). İlköğretim matematik öğretmen adayları için matematiğin doğasına yönelik inanç ölçeği (MDYİÖ): Bir keşfedici karma desen çalışması. Adıyaman Üniversitesi Eğitim Bilimleri Dergisi, 9(1), 69-98. http://dx.doi.org/10.17984/adyuebd.539351
  • Ariyanto, L., Herman, T., Sumarmo, U., & Suryadi, D. (2017). Developing mathematical resilience of prospective math teachers. In Journal of Physics: Conference Series, 895(1), 1-7, IOP Publishing. https://doi.org/10.1088/1742-6596/895/1/012062.
  • Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173
  • Baş, F., Işık, A., Çakmak Gürel, Z., Okur, M., & Bekdemir, M. (2015). İlköğretim matematik öğretmen adaylarının matematığın doğasına ilışkın düşüncelerı: Bır yapısal eşıtlık modelı incelemesı1. Kastamonu Üniversitesi Kastamonu Eğitim Dergisi, 23(1), 123-140.
  • Benard, B. (1996). The foundations of the resiliency paradigm. Premier Issue
  • Bland, L. C., Sowa, C. J., & Callahan, C. M. (1994). An overview of resilience in gifted children. Roeper Review, 17(2), 77-80.
  • Brantlinger, E. (1996). Influence of preservice teachers' beliefs about pupil achievement on attitudes toward inclusion. Teacher Education and Special Education, 19(1), 17-33.
  • Brown, A. L. (1978). Knowing When, where, and how to remember: A problem of metacognition. In R. Glasser (Ed.), Advances in instructional psychology. Hillsdale, NJ: Lawrence Erbaum.
  • Çelik, H. C., & Arslan, İ. (2022). Matematik başarısının yordanması: Matematiksel üstbiliş ve problem kurma öz-yeterliğinin rolü. Journal of Uludag University Faculty of Education, 35(2), 385-406. https://doi.org/10.19171/uefad.1059329
  • Dede, Y., & Karakuş, F. (2014). Matematik öğretmeni adaylarının matematiğe yönelik inançları üzerinde öğretmen eğitimi programlarının etkisi. Kuram ve Uygulamada Eğitim Bilimleri, 14(2), 791-809.
  • Desoete, A., & Ozsoy, G. (2009). Introduction: Metacognition, More than the Lognes Monster?. Online Submission, 2(1), 1-6.
  • Desoete, A., & Veenman, M. (2006). Metacognition in mathematics: Critical issues on nature, theory, assessment and treatment. In Metacognition in mathematics education (pp. 1-10).
  • Ernest, P. (1989). The knowledge, beliefs, and attitudes of the mathematics teacher: A model. Journal of Education for Teaching, 15(1), 13-33.
  • Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole Publishing Co.
  • Flavell. J. H. (1987). Speculation about the nature and development of metacognition. Metacognition, motivation, and understanding, F. Weinert and R. Kluwe, Lawrence Erlbaum, New Jersey, 21-29.
  • Flavell, J. H. (1976) Metacognitive aspects of problem solving. L. Resnick (Ed.), The nature of intelligence içinde (s. 231-236), Hillsdale, NJ: Erlbaum. 75
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring a new area of cognitive-developmental inquiry, American Psychologist, 34(10), 906-911. doi:10.1037/0003-066X.34.10.906
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (Vol. 7, p. 429). New York: McGraw-hill.
  • Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK. Re-examining pedagogical content knowledge in science education, 28-42.
  • Gürefe, N., & Akçakin, V. (2018). The Turkish Adaptation of the Mathematical Resilience Scale: Validity and Reliability Study. Journal of Education and Training Studies, 6(4), 38-47. https://doi.org/10.11114/jets.v6i3.2992
  • Hayes, A. F. (2017). Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. Guilford Publications.
  • Jew, C. L., Green, K. E., & Kroger, J. (1999). Development and validation of a measure of resiliency. Measurement and evaluation in counseling and development, 32(2), 75-89.
  • Johnston-Wilder, S., & Lee, C. (2010). Developing mathematical resilience. Berea Conference Paper, University of Warwick, UK. Retrieved from http://oro.open.ac.uk/24261/2/3C23606C.pdf
  • Karakelle, S. (2012). Üst bilişsel farkındalık, zekâ, problem çözme algısı ve düşünme ihtiyacı arasındaki bağlantılar. Eğitim ve Bilim, 37(164).
  • Kooken, J., Welsh, M. E., McCoach, D. B., Johnston-Wilder, S., & Lee, C. (2016). Development and validation ofthe mathematical resilience scale. Measurement and Evaluation in Counseling and Development, 49(3), 217-242. https://doi.org/10.1177/0748175615596782
  • Kroll, D. L. & Miller, T. (1993). Insights from research on mathematical problem solving in the middle grades. D.T. Owens (Ed.). Research ideas for the classroom: Middle grades mathematics içinde (s. 58-77). NY: Macmillan.
  • Lee, C. & Johnston-Wilder, S. (2017). The Construct of Mathematical Resilience. (U. XolocotzinEligio Ed.) Understanding Emotions in Mathematical Thinking and Learning. Elsevier, pp. 269–291. https://doi.org/10.1016/B978-0-12-802218-4.00010-8.
  • Lester Jr, F. K., & Garofalo, J. (1987). The Influence of Affects, Beliefs, and Metacognition on Problem Solving Behavior: Some Tentative Speculations.
  • Ma, X., & Kishor, N. (1997). Assessing the Relationship between Attitude toward Mathematics and Achievement in Mathematics: A Meta-Analysis. Journal for Research in Mathematics Education, 28, 26-47.
  • MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99-128. https://doi.org/10.1207/s15327906mbr3901_4
  • Marangoz, D. (2024). Ortaokul öğrencilerinin matematiksel dayanıklıklarının incelenmesi ve matematik başarısı ile ilişkisi. EKEV Akademi Dergisi, (97), 83-98. https://doi.org/10.17753/sosekev.1403892.
  • Masten, A. S. (2001). Ordinary magic: Resilience processes in development. American psychologist, 56(3), 227.
  • McLeod, D. B., & McLeod, S. H. (2002). Synthesis—beliefs and mathematics education: Implications for learning, teaching, and research. In G. C. Leder, E. Pehkonen, G. Törner (Eds.), In Beliefs: A hidden variable in mathematics education (pp. 115-123). Springer.
  • Morkoyunlu, Z., & Saltık Ayhanöz, G. (2023). Ortaokul öğrencilerinin matematiksel inancının ile matematiksel dayanıklılığına etkisinin incelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 24(1), 426-450. https://doi.org/10.29299/kefad.1189717.
  • National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. NCTM.
  • OECD (2013). PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy. OECD Publishing. http://dx.doi.org/10.1787/9789264190511-en.
  • Özsoy, G. (2007). İlköğretim beşinci sınıfta üstbiliş stratejileri öğretiminin problem çözme başarısına etkisi. Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Palsdottir, G. (2007). Girls’ beliefs about the learning of mathematics. The Montana Mathematics Enthusiast, Monograph 3, 117-124.
  • Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of educational research, 62(3), 307-332.
  • Pehkonen, E. (2004). State-of-art in mathematical beliefs research. In M. Niss (Ed.), Proceedings of the 10th International Congress on Mathematical Education (pp. 1-14). Roskilde, Roskilde University
  • Pekdemir, Ü. (2019). The Validity and Reliability of the Academic Resilience in Mathematics Scale Turkish Form. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 10(1), 217-231.
  • Peker, M. & Mirasyedioğlu, Ş. (2003). Lise 2. sınıf öğrencilerinin matematik dersine yönelik tutumları ve başarıları arasındaki ilişki. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 14(14), 157-166.
  • Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. Second handbook of research on mathematics teaching and learning, 1, 257-315.
  • Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in college students. Educational Psychology Review, 16(4), 385-407. https://doi.org/10.1007/s10648-004-0006-x
  • Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Practice, 41(4), 219-225. https://doi.org/10.1207/s15430421tip4104_3
  • Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717-731.
  • Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16(2), 93–115. https://doi.org/10.1037/a0022658
  • Rak, C. F., & Patterson, L. E. (1996). Promoting resilience in at‐risk children. Journal of counseling & development, 74(4), 368-373.
  • Raymond, A. M. (1997). Inconsistency between a beginning elementary school teacher's mathematics beliefs and teaching practice. Journal for research in mathematics education, 28(5), 550-576.
  • Schraw, G. & Sperling-Dennison, R. (1994). Assessing mathematical awareness. Contemporary Educational Psychology, 19, 460-470.
  • Schunk, D. H. (1989). Self-efficacy and achievement behaviors. Educational Psychology Review, 1(3), 173-208
  • Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of education, 196(2), 1-38. https://doi.org/10.1177/002205741619600202
  • Silver, E. A. (1985). Teaching and learning mathematical problem solving: Multiple research perspectives. Hillsdale, Erlbaum.
  • Steinbring, H. (1998). Elements of epistemological knowledge for mathematics teachers. Journal of Mathematics Teacher Education, 1(2), 157-189.
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.), Allyn and Bacon.
  • Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., & Peck, R. i Rowley G. (2008). Policy, practice, and readiness to teach primary and secondary mathematics in, 17.
  • Tay, L. Y., Chan, M., Chong, S. K., Tan, J. Y., & Aiyoob, T. B. (2024). Learning of mathematics: A metacognitive experiences perspective. International Journal of Science and Mathematics Education, 22(3), 561-583. http://dx.doi.org/10.1007/s10763-023-10385-8
  • Thompson, A. G. (1992). Teachers’ beliefs and conceptions: A synthesis of the research In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (s. 127-146), New York: Macmillian.
  • Underhill, R. (1988). Focus on Research into Practice in Diagnostic and Prescriptive Mathematics: Mathematics Learners' Beliefs: A Review. Focus on learning problems in mathematics, 10(1), 55-69.
  • Van de Walle, J. A., Karp, K. S., Lovin, L. H., & Bay-Williams, J. M. (2013). Teaching Student-Centered Mathematics: Developmentally Appropriate Instruction for Grades 3-5 (Volume II) (Vol. 2). Pearson Higher Ed.
  • Vance, E. & Sanchez, H. (1998). Creating aservice system that builds resiliency. NC Department of Health and Human Services
There are 62 citations in total.

Details

Primary Language English
Subjects Mathematics Education
Journal Section Articles
Authors

Nejla Gürefe 0000-0002-0705-0890

Emine Eryılmaz 0000-0001-8869-9124

Early Pub Date April 30, 2025
Publication Date April 30, 2025
Submission Date March 15, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Gürefe, N., & Eryılmaz, E. (2025). The Mediating Role of Metacognitive Awareness in the Relationship between Middle School Preservice Mathematics Teachers’ Beliefs About the Nature of Mathematics and Mathematical Resilience. Bartın University Journal of Faculty of Education, 14(2), 455-466. https://doi.org/10.14686/buefad.1452974

All the articles published in the journal are open access and distributed under the conditions of CommonsAttribution-NonCommercial 4.0 International License 

88x31.png


Bartın University Journal of Faculty of Education