Review
BibTex RIS Cite

A Review Study on Electromagnetic Wave Shielding

Year 2024, Volume: 7 Issue: 1, 57 - 66, 30.06.2024
https://doi.org/10.55117/bufbd.1412738

Abstract

Electromagnetic shielding has become one of the most studied topics recently. Electromagnetic wave shielding is very important to protect sensitive electronic devices from electromagnetic interference and to protect living beings, especially humans, from the harmfull effects of electromagnetic waves. Basically, there are three mechanisms in shielding: reflection, absorption and multiple reflections. Many materials based on these mechanisms have been developed in the literature. Generally in the literature; concrete, wood, plasterboard, graphite, graphite cement, steel fiber cement, EPS filled cement-based composite, ferrite powder, rubber ferrite, conductive polypropyl film, spinel ferrite, carbon black cement-based composite, metallic sawdust, foamed concrete containing BFS, ceramics materials such as composite, polymer, polymer composite, cement-based material, nickel, Ca-Si plate, chipboard, ladle furnace slag (LFS), blast furnace slag (BFS), brick, phosphor materials, brass, SS304 stainless steel fibers and nanoparticles has been studied. To measure the electromagnetic shielding effectiveness, Multi-Channel-Coupling, Vector network analyzer (VNA), waveguide model and Field generator-spectrum analyzer pair are used.

Project Number

222M403

References

  • S. Das, A. K. Mukhopadhyay, S. Datta, D. Basu, “Prospects of microwave processing: An overview. Bulletin of materials science”, 32, 1-13, 2009.
  • S. Tzeng, F.-Y. Chang, Mater. Sci. Eng., 302, 258, A 2001.
  • Y. Dai, M. Sun, C. Liu, Z. Li, “Electromagnetic wave absorbing characteristics of carbon black cement-based composites.” Cement and Concrete Composites, 32(7), 508-513, 2010.
  • V. Shukla, “Review of electromagnetic interference shielding materials fabricated by iron ingredients”. Nanoscale Advances, 1, 1640-1671, 2019
  • J. Cao, D. D. L. Chung, "Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding." Cement and Concrete Research 33.11: 1737-1740, 2003.
  • Y. Naito, K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics”, IEEE Transactions on Microwave Theory and Techniques, 19(1), 65-72, 1971.
  • G. Cerri, R. Deleo, V.M. Primiani, “Theoretical and experimental evaluation of the electromagnetic radiation from apertures in shielded enclosure.”, IEEE Transactions on Electromagnetic Compatibility, 34(4), 423-432, 1971.
  • J. Y. Shin, J. H. Oh, “The microwave absorbing phenomena of ferrite microwave absorbers.”, IEEE Transactions on Magnetics, 29(6), 3437-3439, 1993.
  • L. Li, D. D. L. Chung, “Effect of viscosity on the electrical properties of conducting thermoplastic composites made by compression molding of a powder mixture.”, Polymer Composites, 14(6), 467-472, 1993.
  • C.H. Kraft, “Modeling leakage through finite apertures with TLM.” Proceedings of IEEE Symposium on Electromagnetic Compatibility; 22-26 August 1994, pp. 73-76, Chicago, IL, USA.
  • A. Kaynak, “Electromagnetic shielding effectiveness of galvanostatically synthesized conducting polypyrrole films in the 300–2000 MHz frequency range.”, Materials Research Bulletin, 31(7), 845-860, (1996).
  • K. Sato, T. Manabe, T. Ihara, H. Saito, S. Ito, T. Tanaka, T. Kimura, “Measurements of reflection and transmission characteristics of interior structures of office building in the 60-GHz band.”, IEEE transactions on antennas and propagation, 45(12), 1783-1792, (1997).
  • K. Sato, T. Manabe, T. Ihara, H. Saito, S. Ito, T. Tanaka, T. Kimura, “Measurements of reflection and transmission characteristics of interior structures of office building in the 60-GHz band.”, IEEE transactions on antennas and propagation, 45(12), 1783-1792, (1997).
  • M.P. Robinson, T.M. Benson, C. Christopoulos, J.F. Dawson, M.D. Ganley, A.C. Marvin, S.J. Porter, D.W.P. Thomas, “Analytical formulation for the shielding effectiveness of enclosures with apertures.” IEEE Transactions on Electromagnetic Compatibility; 40(3): 240- 248, 1998.
  • E. T. Thostenson, T. W. Chou, “Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 30(9), 1055-1071.
  • R. Dalke, C. L. Holloway, P. McKenna, “Reflection and transmission properties of reinforced concrete walls.”, In IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 99CH37010) (Vol. 3, pp. 1502-1505), (1999, July).
  • S. Zurbes, W. Stahl, K. ,Matheus, J. Haartsen, “Radio network performance of Bluetooth.”, In 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record (Vol. 3, pp. 1563-1567), (2000, June).
  • G. Cerri, S. Chiarandini, P. Russo, A. Schiavoni, “Electromagnetic coupling between arbitrarily bent wires and scatters analysed by a hybrid MoMTD/FDTD approach.” IEE Proceedings – Microwave, Antennas and Propagation 2000; 147(4): 261-266.
  • P. Ali-Rantala, L. Sydanheimo, M. Keskilammi, M. Kivikoski, “Indoor propagation comparison between 2.45 GHz and 433 MHz transmissions.”, In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313) (Vol. 1, pp. 240-243, (2002, June).
  • O. Karjalainen, S. Rantala, M. Kivikoski, “The performance of Bluetooth system in the presence of WLAN interference in an office environment.”, In The 8th International Conference on Communication Systems, 2002. ICCS 2002. (Vol. 2, pp. 628-631), (2002, November).
  • P. Ali-Rantala, L. Ukkonen, L. Sydanheimo, M. Keskilammi, M. Kivikoski, (2003, June). Different kinds of walls and their effect on the attenuation of radiowaves indoors. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450) (Vol. 3, pp. 1020-1023). IEEE
  • R. R. Lao, J. H. Tarng, C. Hsiao, (2003, April). Transmission coefficients measurement of building materials for UWB systems in 3-10 GHz. In The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring. (Vol. 1, pp. 11-14). IEEE.
  • S. Wen, D. D. L. Chung, "Electromagnetic interference shielding reaching 70 dB in steel fiber cement." Cement and Concrete Research 34.2 (2004): 329-332.
  • H. Guan, S. Liu, Y. Duan, J. Cheng, “Cement based electromagnetic shielding and absorbing building materials.” Cement and Concrete Composites, 28(5), 468-474, (2006).
  • C. Feng, Z. Shen, “A hybrid FD-MoM technique for predicting shielding effectiveness of metallic enclosures with apertures.” IEEE Transactions on Electromagnetic Compatibility 2005; 47(3): 456-462.
  • H. Guan, S. Liu, Y. Duan, Y. Zhao, “Investigation of the electromagnetic characteristics of cement based composites filled with EPS.”, Cement and concrete composites, 29(1), 49-54, (2007).
  • M. Edrisi, A. Khodabakhshian, “Simple methodology for electric and magnetic shielding effectiveness computation of enclosures for electromagnetic compatibility use.” Journal of Electromagnetic Waves and Applications 2006; 20(8): 1051-1060.
  • F.A. Po'ad, M.Z.M. Jenu, C. Christopoulos, D.W.P. Thomas, “Analytical and experimental study of the shielding effectiveness of a metallic enclosure with off-centered apertures.” 17th International Zurich Symposium on Electromagnetic Compatibility; 27 February-03 March 2006, Singapore, Singapore.
  • M. Farwell, J. Ross, R. Luttrell, D. Cohen, W. Chin, T. Dogaru, “Sense through the wall system development and design considerations.”, Journal of the Franklin Institute, 345(6), 570-591, (2008).
  • M. D’Amore, V. De Santis, M. Feliziani, “Magnetic shielding of apertures loaded by resistive coating.” IEEE Transactions on Magnetics 2010; 46(8): 3341-3344.
  • A. Pruksanubal, “Study on electromagnetic properties of reinforced concrete construction wall.”, (2011, March). In PIER Symposium Proceedings (pp. 201-204).
  • L. Baoyi, D. Yuping, Z. Yuefang, L. Shunhua, (2011). Electromagnetic wave absorption properties of cement-based composites filled with porous materials. Materials & Design, 32(5), 3017-3020.
  • J. Lesnikowski, “Dielectric permittivity measurement methods of textile substrate of textile transmission lines.”, (2012). Przeglad Elektrotechniczny, 88(3A), 148-151.
  • E. Liu, P. A. Du, B. Nie, “An extended analytical formulation for fast prediction of shielding effectiveness of an enclosure at different observation points with an off-axis aperture.” IEEE Transactions on electromagnetic compatibility, 56(3), 589-598, (2013).
  • N. S. Kumar, L. Andal, P. Rajeswari, A. Gobinath, B. Parthiban, “Analysis of EMI shielding effectiveness of building materials.”, Electrical Engineering: An International Journal (EEIJ), 1(1), 11-19, (2014).
  • R. Kubacki, “New Attempt to Building Materials Permittivity Measurements.”, In PIERS Proceedings, (2014, August).
  • M. Bugaj, “Attenuation Measurements of Materials Used in Construction of Buildings.”, In PIERS Proceedings, (2014, August).
  • P. Kot, A. Shaw, K. Jones, O. Cullen, J. D. Mason, I. A. AlShamma’a, “The feasibility of using electromagnetic waves in determining the moisture content of building fabrics and the cause of the water ingress.”, (2014). International Journal on Smart Sensing and Intelligent Systems, 7(5), 1-5.
  • H. Karami, R. Moini, S.H.H. Sadeghi, H. Maftooli, M. Mattes, J.R. Mosig, “Efficient analysis of shielding effectiveness of metallic rectangular enclosures using unconditionally stable time-domain integral equations. IEEE Transactions on Electromagnetic Compatibility 2014; 56(6): 1412–1419.
  • M. Nobakhti, P. Dehkhoda, A. Tavakoli, “Improved modal method of moments technique to compensate the effect of wall dimension in shielding effectiveness evaluation.”, IET Science, Measurement & Technology 2014; 8: 17-22.
  • H.H. Park, J.H. Kwon, S. Ahn, “Magnetic Shielding Analysis of a Slit on a Conducting Plate Coated With a Ferrite Sheet. ”: Transverse Incidence. IEEE Transactions on Magnetics 2014; 50(9): Article# 5000506.
  • D. Micheli, A. Delfini, F. Santoni, F. Volpini, M. Marchetti, “Measurement of electromagnetic field attenuation by building walls in the mobile phone and satellite navigation frequency bands.”, (2014). IEEE antennas and wireless propagation letters, 14, 698-702.
  • P. Gajšek, P. Ravazzani, J. Wiart, J. Grellier, T. Samaras, G. Thuróczy, “Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz–6 GHz).”, Journal of exposure science & environmental epidemiology, 25(1), 37-44, (2015).
  • I. B. Basyigit, M. F. Caglar, S. Helhel, “Magnetic shielding effectiveness and simulation analysis of metalic enclosures with apertures.”, (2015, November). In 2015 9th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 328-331).
  • M. Cakir, N. U. Kockal, S. Ozen, A. Kocakusak, S. Helhel, “Investigation of electromagnetic shielding and absorbing capabilities of cementitious composites with waste metallic chips.”, Journal of Microwave Power and Electromagnetic Energy, 51(1), 31-42, (2017).
  • S. S. Cho, J. S. Yoo, J. M. Kim, I. P. Hong, “Prediction of electromagnetic transmission properties using dielectric property modeling of foamed concrete containing BFS.”, Construction and Building Materials, 151, 650-660, (2017).
  • S. S. Cho, J. M. Kim, I. P. Hong, (2017). Electromagnetic Shielding Characteristics of Eco-Friendly Foamed Concrete Wall. International Journal of Antennas and Propagation, 2017.
  • M. Cakir, N. U. Kockal, S. Ozen, A. Kocakusak, S. Helhel, “Investigation of electromagnetic shielding and absorbing capabilities of cementitious composites with waste metallic chips.” Journal of Microwave Power and Electromagnetic Energy, 51(1), 31-42, (2017).
  • A. Jakubas, E. Łada-Tondyra, M. Makówka, Ł. Suchecki, (2022). “A study on the possibility of using iron scale in the construction of electromagnetic field shields.” Energies, 15(4), 1332.
  • C. Kaykılarlı, T.Y. Eken, B. Küçükelyas, M. B. Tabakcıoğlu, “Electromagnetic shielding effectiveness of Carbon Fiber Reinforced Polymer (CFRP) composites with Hematite”, 2nd International Symposium of Scientific Research and Innovative Studies, ISSRIS 2022,Bandırma.
  • S. Güler, “An investigation on electromagnetic shielding effectiveness of metallic enclosure depending on aperture position. Journal of Microwave Power and Electromagnetic Energy”, 57(2), 129-145, 2023.
  • T. Y. Eken, C. Kaykılarlı, B. Küçükelyas, M.B. Tabakcioglu, " Electromagnetic Shielding Effectiveness and Impact Test Performance of Carbon Fiber Reinforced Polymer Composites with Hematite and Goethite", Macromolecular Materials and Engineering , 2023, 10.1002/mame.202300271

Elektromanyetik Dalga Kalkanlaması Üzerine Bir Derleme Çalışması

Year 2024, Volume: 7 Issue: 1, 57 - 66, 30.06.2024
https://doi.org/10.55117/bufbd.1412738

Abstract

Elektromanyetik kalkanlama son zamanlarda en çok çalışılan konulardan birisi haline gelmiştir. Hassas elektronik cihazların elektromanyetik girişimden korunması ve elektromanyetik dalgaların zararlı etkisinden canlıların bilhassa insanların kurtulması için elektromanyetik dalga kalkanlaması çok önemlidir. Temelde kalkanlamada yansıma, soğurma ve çoklu yansıma başta olmak üzere 3 mekanizma vardır. Literatürde bu mekanizmaları temel alan birçok malzeme geliştirilmiştir. Genellikle literatürde; beton, ahşap, alçı levha, grafit, grafit çimento, çelik fiber çimento, EPS dolgulu çimento esaslı kompozit, ferrit tozu, kauçuk ferrit, iletken polipropil film, spinel ferrit, karbon siyahı çimento esaslı kompozit, metalik talaş, BFS içeren köpüklü beton, seramik kompozit, polimer, polimer kompozit, çimento esaslı malzeme, nikel, Ca-Si levha, sunta, pota fırını cürufu (LFS), yüksek fırın cürufu (BFS), tuğla, fosfor malzemeleri, pirinç, SS304 paslanmaz çelikten lifler ve nanopartiküller gibi malzemeler çalışılmıştır. Elektromanyetik kalkanlama verimliliğini ölçmek için ise, Multi-Channel-Coupling, Vektör ağ analizörü (VNA), dalga kılavuzu modeli ve Field generator-spektrum analizör çifti kullanılmıştır.

Supporting Institution

TÜBİTAK

Project Number

222M403

Thanks

Bu çalışma TÜBİTAK tarafından 222M403 proje numarası altında desteklenmiştir.

References

  • S. Das, A. K. Mukhopadhyay, S. Datta, D. Basu, “Prospects of microwave processing: An overview. Bulletin of materials science”, 32, 1-13, 2009.
  • S. Tzeng, F.-Y. Chang, Mater. Sci. Eng., 302, 258, A 2001.
  • Y. Dai, M. Sun, C. Liu, Z. Li, “Electromagnetic wave absorbing characteristics of carbon black cement-based composites.” Cement and Concrete Composites, 32(7), 508-513, 2010.
  • V. Shukla, “Review of electromagnetic interference shielding materials fabricated by iron ingredients”. Nanoscale Advances, 1, 1640-1671, 2019
  • J. Cao, D. D. L. Chung, "Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding." Cement and Concrete Research 33.11: 1737-1740, 2003.
  • Y. Naito, K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics”, IEEE Transactions on Microwave Theory and Techniques, 19(1), 65-72, 1971.
  • G. Cerri, R. Deleo, V.M. Primiani, “Theoretical and experimental evaluation of the electromagnetic radiation from apertures in shielded enclosure.”, IEEE Transactions on Electromagnetic Compatibility, 34(4), 423-432, 1971.
  • J. Y. Shin, J. H. Oh, “The microwave absorbing phenomena of ferrite microwave absorbers.”, IEEE Transactions on Magnetics, 29(6), 3437-3439, 1993.
  • L. Li, D. D. L. Chung, “Effect of viscosity on the electrical properties of conducting thermoplastic composites made by compression molding of a powder mixture.”, Polymer Composites, 14(6), 467-472, 1993.
  • C.H. Kraft, “Modeling leakage through finite apertures with TLM.” Proceedings of IEEE Symposium on Electromagnetic Compatibility; 22-26 August 1994, pp. 73-76, Chicago, IL, USA.
  • A. Kaynak, “Electromagnetic shielding effectiveness of galvanostatically synthesized conducting polypyrrole films in the 300–2000 MHz frequency range.”, Materials Research Bulletin, 31(7), 845-860, (1996).
  • K. Sato, T. Manabe, T. Ihara, H. Saito, S. Ito, T. Tanaka, T. Kimura, “Measurements of reflection and transmission characteristics of interior structures of office building in the 60-GHz band.”, IEEE transactions on antennas and propagation, 45(12), 1783-1792, (1997).
  • K. Sato, T. Manabe, T. Ihara, H. Saito, S. Ito, T. Tanaka, T. Kimura, “Measurements of reflection and transmission characteristics of interior structures of office building in the 60-GHz band.”, IEEE transactions on antennas and propagation, 45(12), 1783-1792, (1997).
  • M.P. Robinson, T.M. Benson, C. Christopoulos, J.F. Dawson, M.D. Ganley, A.C. Marvin, S.J. Porter, D.W.P. Thomas, “Analytical formulation for the shielding effectiveness of enclosures with apertures.” IEEE Transactions on Electromagnetic Compatibility; 40(3): 240- 248, 1998.
  • E. T. Thostenson, T. W. Chou, “Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 30(9), 1055-1071.
  • R. Dalke, C. L. Holloway, P. McKenna, “Reflection and transmission properties of reinforced concrete walls.”, In IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 99CH37010) (Vol. 3, pp. 1502-1505), (1999, July).
  • S. Zurbes, W. Stahl, K. ,Matheus, J. Haartsen, “Radio network performance of Bluetooth.”, In 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record (Vol. 3, pp. 1563-1567), (2000, June).
  • G. Cerri, S. Chiarandini, P. Russo, A. Schiavoni, “Electromagnetic coupling between arbitrarily bent wires and scatters analysed by a hybrid MoMTD/FDTD approach.” IEE Proceedings – Microwave, Antennas and Propagation 2000; 147(4): 261-266.
  • P. Ali-Rantala, L. Sydanheimo, M. Keskilammi, M. Kivikoski, “Indoor propagation comparison between 2.45 GHz and 433 MHz transmissions.”, In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313) (Vol. 1, pp. 240-243, (2002, June).
  • O. Karjalainen, S. Rantala, M. Kivikoski, “The performance of Bluetooth system in the presence of WLAN interference in an office environment.”, In The 8th International Conference on Communication Systems, 2002. ICCS 2002. (Vol. 2, pp. 628-631), (2002, November).
  • P. Ali-Rantala, L. Ukkonen, L. Sydanheimo, M. Keskilammi, M. Kivikoski, (2003, June). Different kinds of walls and their effect on the attenuation of radiowaves indoors. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450) (Vol. 3, pp. 1020-1023). IEEE
  • R. R. Lao, J. H. Tarng, C. Hsiao, (2003, April). Transmission coefficients measurement of building materials for UWB systems in 3-10 GHz. In The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring. (Vol. 1, pp. 11-14). IEEE.
  • S. Wen, D. D. L. Chung, "Electromagnetic interference shielding reaching 70 dB in steel fiber cement." Cement and Concrete Research 34.2 (2004): 329-332.
  • H. Guan, S. Liu, Y. Duan, J. Cheng, “Cement based electromagnetic shielding and absorbing building materials.” Cement and Concrete Composites, 28(5), 468-474, (2006).
  • C. Feng, Z. Shen, “A hybrid FD-MoM technique for predicting shielding effectiveness of metallic enclosures with apertures.” IEEE Transactions on Electromagnetic Compatibility 2005; 47(3): 456-462.
  • H. Guan, S. Liu, Y. Duan, Y. Zhao, “Investigation of the electromagnetic characteristics of cement based composites filled with EPS.”, Cement and concrete composites, 29(1), 49-54, (2007).
  • M. Edrisi, A. Khodabakhshian, “Simple methodology for electric and magnetic shielding effectiveness computation of enclosures for electromagnetic compatibility use.” Journal of Electromagnetic Waves and Applications 2006; 20(8): 1051-1060.
  • F.A. Po'ad, M.Z.M. Jenu, C. Christopoulos, D.W.P. Thomas, “Analytical and experimental study of the shielding effectiveness of a metallic enclosure with off-centered apertures.” 17th International Zurich Symposium on Electromagnetic Compatibility; 27 February-03 March 2006, Singapore, Singapore.
  • M. Farwell, J. Ross, R. Luttrell, D. Cohen, W. Chin, T. Dogaru, “Sense through the wall system development and design considerations.”, Journal of the Franklin Institute, 345(6), 570-591, (2008).
  • M. D’Amore, V. De Santis, M. Feliziani, “Magnetic shielding of apertures loaded by resistive coating.” IEEE Transactions on Magnetics 2010; 46(8): 3341-3344.
  • A. Pruksanubal, “Study on electromagnetic properties of reinforced concrete construction wall.”, (2011, March). In PIER Symposium Proceedings (pp. 201-204).
  • L. Baoyi, D. Yuping, Z. Yuefang, L. Shunhua, (2011). Electromagnetic wave absorption properties of cement-based composites filled with porous materials. Materials & Design, 32(5), 3017-3020.
  • J. Lesnikowski, “Dielectric permittivity measurement methods of textile substrate of textile transmission lines.”, (2012). Przeglad Elektrotechniczny, 88(3A), 148-151.
  • E. Liu, P. A. Du, B. Nie, “An extended analytical formulation for fast prediction of shielding effectiveness of an enclosure at different observation points with an off-axis aperture.” IEEE Transactions on electromagnetic compatibility, 56(3), 589-598, (2013).
  • N. S. Kumar, L. Andal, P. Rajeswari, A. Gobinath, B. Parthiban, “Analysis of EMI shielding effectiveness of building materials.”, Electrical Engineering: An International Journal (EEIJ), 1(1), 11-19, (2014).
  • R. Kubacki, “New Attempt to Building Materials Permittivity Measurements.”, In PIERS Proceedings, (2014, August).
  • M. Bugaj, “Attenuation Measurements of Materials Used in Construction of Buildings.”, In PIERS Proceedings, (2014, August).
  • P. Kot, A. Shaw, K. Jones, O. Cullen, J. D. Mason, I. A. AlShamma’a, “The feasibility of using electromagnetic waves in determining the moisture content of building fabrics and the cause of the water ingress.”, (2014). International Journal on Smart Sensing and Intelligent Systems, 7(5), 1-5.
  • H. Karami, R. Moini, S.H.H. Sadeghi, H. Maftooli, M. Mattes, J.R. Mosig, “Efficient analysis of shielding effectiveness of metallic rectangular enclosures using unconditionally stable time-domain integral equations. IEEE Transactions on Electromagnetic Compatibility 2014; 56(6): 1412–1419.
  • M. Nobakhti, P. Dehkhoda, A. Tavakoli, “Improved modal method of moments technique to compensate the effect of wall dimension in shielding effectiveness evaluation.”, IET Science, Measurement & Technology 2014; 8: 17-22.
  • H.H. Park, J.H. Kwon, S. Ahn, “Magnetic Shielding Analysis of a Slit on a Conducting Plate Coated With a Ferrite Sheet. ”: Transverse Incidence. IEEE Transactions on Magnetics 2014; 50(9): Article# 5000506.
  • D. Micheli, A. Delfini, F. Santoni, F. Volpini, M. Marchetti, “Measurement of electromagnetic field attenuation by building walls in the mobile phone and satellite navigation frequency bands.”, (2014). IEEE antennas and wireless propagation letters, 14, 698-702.
  • P. Gajšek, P. Ravazzani, J. Wiart, J. Grellier, T. Samaras, G. Thuróczy, “Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz–6 GHz).”, Journal of exposure science & environmental epidemiology, 25(1), 37-44, (2015).
  • I. B. Basyigit, M. F. Caglar, S. Helhel, “Magnetic shielding effectiveness and simulation analysis of metalic enclosures with apertures.”, (2015, November). In 2015 9th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 328-331).
  • M. Cakir, N. U. Kockal, S. Ozen, A. Kocakusak, S. Helhel, “Investigation of electromagnetic shielding and absorbing capabilities of cementitious composites with waste metallic chips.”, Journal of Microwave Power and Electromagnetic Energy, 51(1), 31-42, (2017).
  • S. S. Cho, J. S. Yoo, J. M. Kim, I. P. Hong, “Prediction of electromagnetic transmission properties using dielectric property modeling of foamed concrete containing BFS.”, Construction and Building Materials, 151, 650-660, (2017).
  • S. S. Cho, J. M. Kim, I. P. Hong, (2017). Electromagnetic Shielding Characteristics of Eco-Friendly Foamed Concrete Wall. International Journal of Antennas and Propagation, 2017.
  • M. Cakir, N. U. Kockal, S. Ozen, A. Kocakusak, S. Helhel, “Investigation of electromagnetic shielding and absorbing capabilities of cementitious composites with waste metallic chips.” Journal of Microwave Power and Electromagnetic Energy, 51(1), 31-42, (2017).
  • A. Jakubas, E. Łada-Tondyra, M. Makówka, Ł. Suchecki, (2022). “A study on the possibility of using iron scale in the construction of electromagnetic field shields.” Energies, 15(4), 1332.
  • C. Kaykılarlı, T.Y. Eken, B. Küçükelyas, M. B. Tabakcıoğlu, “Electromagnetic shielding effectiveness of Carbon Fiber Reinforced Polymer (CFRP) composites with Hematite”, 2nd International Symposium of Scientific Research and Innovative Studies, ISSRIS 2022,Bandırma.
  • S. Güler, “An investigation on electromagnetic shielding effectiveness of metallic enclosure depending on aperture position. Journal of Microwave Power and Electromagnetic Energy”, 57(2), 129-145, 2023.
  • T. Y. Eken, C. Kaykılarlı, B. Küçükelyas, M.B. Tabakcioglu, " Electromagnetic Shielding Effectiveness and Impact Test Performance of Carbon Fiber Reinforced Polymer Composites with Hematite and Goethite", Macromolecular Materials and Engineering , 2023, 10.1002/mame.202300271
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering Electromagnetics
Journal Section Review
Authors

Buse Özken 0000-0002-4331-6000

Mehmet Barış Tabakcıoğlu 0000-0002-1607-355X

Project Number 222M403
Early Pub Date June 28, 2024
Publication Date June 30, 2024
Submission Date December 31, 2023
Acceptance Date March 4, 2024
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Özken, B., & Tabakcıoğlu, M. B. (2024). Elektromanyetik Dalga Kalkanlaması Üzerine Bir Derleme Çalışması. Bayburt Üniversitesi Fen Bilimleri Dergisi, 7(1), 57-66. https://doi.org/10.55117/bufbd.1412738
AMA Özken B, Tabakcıoğlu MB. Elektromanyetik Dalga Kalkanlaması Üzerine Bir Derleme Çalışması. Bayburt Üniversitesi Fen Bilimleri Dergisi. June 2024;7(1):57-66. doi:10.55117/bufbd.1412738
Chicago Özken, Buse, and Mehmet Barış Tabakcıoğlu. “Elektromanyetik Dalga Kalkanlaması Üzerine Bir Derleme Çalışması”. Bayburt Üniversitesi Fen Bilimleri Dergisi 7, no. 1 (June 2024): 57-66. https://doi.org/10.55117/bufbd.1412738.
EndNote Özken B, Tabakcıoğlu MB (June 1, 2024) Elektromanyetik Dalga Kalkanlaması Üzerine Bir Derleme Çalışması. Bayburt Üniversitesi Fen Bilimleri Dergisi 7 1 57–66.
IEEE B. Özken and M. B. Tabakcıoğlu, “Elektromanyetik Dalga Kalkanlaması Üzerine Bir Derleme Çalışması”, Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 7, no. 1, pp. 57–66, 2024, doi: 10.55117/bufbd.1412738.
ISNAD Özken, Buse - Tabakcıoğlu, Mehmet Barış. “Elektromanyetik Dalga Kalkanlaması Üzerine Bir Derleme Çalışması”. Bayburt Üniversitesi Fen Bilimleri Dergisi 7/1 (June 2024), 57-66. https://doi.org/10.55117/bufbd.1412738.
JAMA Özken B, Tabakcıoğlu MB. Elektromanyetik Dalga Kalkanlaması Üzerine Bir Derleme Çalışması. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2024;7:57–66.
MLA Özken, Buse and Mehmet Barış Tabakcıoğlu. “Elektromanyetik Dalga Kalkanlaması Üzerine Bir Derleme Çalışması”. Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 7, no. 1, 2024, pp. 57-66, doi:10.55117/bufbd.1412738.
Vancouver Özken B, Tabakcıoğlu MB. Elektromanyetik Dalga Kalkanlaması Üzerine Bir Derleme Çalışması. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2024;7(1):57-66.

Indexing