Research Article
BibTex RIS Cite

4,4'-Etilendipiridin ve 2,3-Pirazindikarboksilik Asidin Proton Transfer Tuzu ve Metal Kompleksleri: Sentez, Yapısal Karakterizasyon ve Biyolojik Aktivite

Year 2024, Volume: 7 Issue: 2, 103 - 113, 31.12.2024

Abstract

Bu çalışmada, 4,4'-etilendipiridin (BPE) ile 2,3-pirazindikarboksilik asit’in (H2PDA) yeni bir tuz {(H2BPE)(PDA), 1} ve tuzun Fe(III) {(H2BPE)Fe2(PDA)(H2O)4]n, 2} ve Ni(II) {[Ni(PDA)(BPE)2(H2O)2]n.H2O, 3} kompleksleri sentezlendi ve 1H ve 13C NMR TG-DTA, IR, UV-Vis, element analizi, manyetik duyarlılık teknikleri kullanılarak önerildi. Ayrıca başlangıç materyallerinin ve sentezlenen bileşiklerin Candida albicans mayası ve Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli ve Listeria monocytogenes bakterilerine karşı antibakteriyel ve antifungal aktiviteleri mikrodilüsyon yöntemi kullanılarak araştırılmış ve mevcut antibiyotiklerle (Cefepime, Vankomisin, Levofloksasin ve Flukonazol) kıyaslanmıştır. 1-3 Bileşiklerin maya ve bakterilere karşı aktiviteye sahip olduğu gözlendi. Özellikle, E. faecalis'e karşı bileşik 3 (7,80 µg/mL), B. subtilis bakterisine karşı bileşik 3 (7,80 µg/mL) ve C. albicans mayasına karşı bileşik 1 (15,60 µg/mL). kontrol bileşiklerinden daha iyi aktivite gösterdi.

Project Number

2020-07 ve 2021-42

Thanks

This work was supported by the Kütahya Dumlupinar University Research Foundation (Grant No: 2020-07 and 2021-42) and carried out at the Chemistry Department of the same university.

References

  • [1] Y. Ma, Y.K. He, L.T. Zhang, J.Q. Gao, Z.B. Han, “Synthesis and structure of a new coordination polymer [Cd(pzdc)(bpy)]n (H2pzdc = pyrazine-2,3-dicarboxylic acid. bpy = 2,2′-bipyridine)”. J. Chem. Cryst., vol. 38(4), pp. 267-271, 2008.
  • [2] C.J. Oconnor, C.L. Klein, R.J. Majeste, L.M. Trefonas, “Magnetic properties and crystal structure of (2,3-pyrazinedicarboxylato)copper(II) hydrochloride: a pyrazine bridged ferromagnetic linear chain”. Inorg. Chem., vol. 21(1), pp. 64-67, 1982.
  • [3] J.Y. Lu, “Crystal engineering of Cu-containing metal–organic coordination polymers under hydrothermal conditions,” Coord. Chem. Rev., vol. 246(1-2), pp. 327-347, 2003.
  • [4] Y. Ma, Y.K. He, Z.B. Han, “Catena-poly[[tri­aqua­cadmium(II)]-μ2-pyrazine-2,3-di­carboxyl­ato],” Acta Cryst., vol. E62(10), pp. 2528-2529, 2006.
  • [5] G. Günay, O.Z. Yesilel, C. Darcan, S. Keskin, O. Buyukgungor, “Synthesis. crystal structures. molecular simulations for hydrogen gas adsorption, fluorescent and antimicrobial properties of pyrazine-2,3-dicarboxylate complexes”. Inorg. Chim. Acta, vol. 399, pp. 19-35, 2013.
  • [6] L. Carlucci, G. Ciani, D.M. Proserpio, “Polycatenation. polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev., vol. 246, pp. 247-289, 2003.
  • [7] M. Li, J.F. Xiang, L.J. Yuan, S.M. Wu, S.P. Chen, J.T. Sun, “Syntheses. structures. and photoluminescence of three novel coordination polymers constructed from dimeric d10 metal units. Cryst. Grow. Des., vol. 6, pp. 2036-2040, 2006.
  • [8] T.K. Maji, K. Uemura, H.C. Chang, R. Matsuda, S. Kitagawa, “Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption”. Ang. Chem., vol. 43(25), pp. 3269-3272, 2004.
  • [9] T.K. Maji, G. Mostafa, R. Matsuda, S. Kitagawa, “Guest-induced asymmetry in a metal− organic porous solid with reversible single-crystal-to-single-crystal structural transformation”. J. Am. Chem. Soc., vol. 127(149), pp. 17152-17153, 2005.
  • [10] O.Z. Yesilel, A. Mutlu, O. Buyukgungor, “A new coordination mode of pyrazine-2,3-dicarboxylic acid and its first monodentate complexes: Syntheses, spectral, thermal and structural characterization of [Cu(pzdca)(H2O)(en)2] H2O and [Cu(pzdca)(H2O)(dmpen)2]”. Polyhedron, vol. 27(11), pp. 2471-2477, 2008.
  • [11] O.Z. Yesilel, A. Mutlu, O. Buyukgungor, “Novel dinuclear and polynuclear copper(II)-pyrazine-2,3-dicarboxylate supramolecular complexes with 1,3-propanediamine, N,N,N′,N′-tetramethylethylenediamine and 2,2′-bipyridine”. Polyhedron, vol. 28(3), pp. 437-444, 2009.
  • [12] H. Yin, S.X. Liu, “Copper and zinc complexes with 2,3-pyridinedicarboxylic acid or 2,3-pyrazinedicarboxylic acid: Polymer structures and magnetic properties”. J. Mol. Struct., vol. 918(1-3), pp. 165-173, 2009.[13] R. Kitaura, K. Fujimoto, S.I. Noro, M. Kondo, S. Kitagawa, “A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc= pyrazine-2,3-dicarboxylate; dpyg=1,2-di(4-pyridyl)glycol)”. Ang. Chem., vol. 41(1), pp. 133-135, 2002.
  • [13] R. Kitaura, K. Fujimoto, S.I. Noro, M. Kondo, S. Kitagawa, “A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc= pyrazine-2,3-dicarboxylate; dpyg=1,2-di(4-pyridyl)glycol)”. Ang. Chem., vol. 41(1), pp. 133-135, 2002.
  • [14] J.H. Yang, S.L. Zheng, X.L. Yu, X.M. Chen, “Syntheses. structures. and photoluminescent properties of three silver(I) cluster-based coordination polymers with heteroaryldicarboxylate”. Cryst. Grow. Des., vol. 4(4), pp. 831-836, 2004.
  • [15] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, S. Horike, M. Takata, “Guest shaperesponsive fitting of porous coordination polymer with shrinkable framework”. J. Am. Chem. Soc., vol. 126(43), pp. 14063-14070, 2004.
  • [16] X.M. Lin, L. Chen, H.C. Fang, Z.Y. Zhou, X.X. Zhou, J.Q. Chen, A.W. Xu, Y.P. Cai, “Construction of three one-dimensional zinc(II) complexes containing pyrazine-2,3-dicarboxylic acid”. Inorg. Chim. Acta, vol. 362(8), pp. 2619-2626, 2009.
  • [17] M.J. Fang, M.X. Li, X. He, M. Shao, W. Pang, S.R. Zhu, “Synthesis. structure and thermal stability of ternary metal complexes based on polycarboxylate and N-heterocyclic ligands”. J. Mol. Struct., vol. 921,pp. 137-143, 2009.
  • [18] D.F. Weng, X.J. Zheng, X.B. Chen, L.C. Li, L.P. Jin, “Synthesis, upconversion luminescence and magnetic properties of new lanthanide–organic frameworks with (43)2(46, 66, 83) topology”. Euro. J. Inorg. Chem., vol. 2007(21), pp. 3410-3415, 2007.
  • [19] X.J. Zheng, L.P. Jin, S.Z. Lu, “Hydrothermal syntheses, structures, and properties of first examples of lanthanide(III) 2,3-pyrazinedicarboxylates with three-dimensional framework”. Euro. J. Inorg. Chem., vol. 2002(12), pp. 3356-3363, 2002.
  • [20] K.L. Wong, W.M. Kwok, W.T. Wong, D.L. Phillips, K.W. Cheah, “Green and red three-photon upconversion from polymeric lanthanide(III) complexes”. Ang. Chem., vol. 43(35), pp. 4659-4662, 2004.
  • [21] D. Visinescu, G.I. Pascu, M. Andruh, J. Magull, H.W. Roesky, “A straightforward synthetic route towards tetranuclear copper(II) complexes: reactions between binuclear complexes and exo-bidentate or exobis(bidentate) ligands”. Inorg. Chim. Acta, vol. 340, 201-206, 2002.
  • [22] S. Sain, T.K. Maji, G. Mostafa, T.H. Lu, N.R. Chaudhuri, “A novel layered and pillared topology in a 3D open framework: synthesis. crystal structure and magnetic properties”. New J. hem., vol. 27, pp. 185-187, 2003.
  • [23] N. Buyukkıdan, H. İlkimen, S. Bozyel, M. Sarı, A. Gülbandılar, “The syntheses. structural and biological studies of Co(II) complexes of 1,2-Bis(pyridin-4-yl)ethane with 2-aminobenzene-1,4-disulfonic acid and 2,6-pyridinedicarboxylic acid”. J. Mol. Struct., vol. 1275, pp. 134586, 2023.
  • [24] N. Buyukkıdan, H. İlkimen, S. Bozyel, M. Sarı, A. Gülbandılar, “Two new Cu(II) coordination complexes with 1,2-bis(pyridin-4-yl)ethane bridge-ligand: Synthesis. characterization and antimicrobial activity”. Polyhedron, vol. 223, pp. 115951, 2022.
  • [25] D. Cook, “Vibrational spectra of pyridinium salts”. Canadian J. Chem., vol. 39, pp. 2009-2024, 1961. [26] K. Nakamoto, “Infrared and Raman spectra of inorganic and coordination compounds”. 5th ed. NewYork: Wiley-Interscience, p 232, 1997.
  • [27] K. Sancak, M. Er, Y. Ünver, M. Yildirim, I. Degirmencioglu, “Cu(II), Ni(II) and Fe(II) complexes with a new substituted [1,2,4] triazole Schiff base derived from 4-amino-5-(thien-2-yl ethyl)-2,4-dihydro-3H1,2,4-triazol-3-one and 2-hydroxy-1-naphthaldehyde: synthesis, characterization and a comparison of theoretical and experimental results by Ab inito calculation”. Trans. Metal Chem., vol. 32, pp. 16-22, 2007. [28] M. El-Behery, H. El-Twigry, “Synthesis, magnetic, spectral, and antimicrobial studies of Cu(II), Ni(II) Co(II), Fe(III), and UO2(II) complexes of a new Schiff base hydrazone derived from 7-chloro-4-hydrazinoquinoline”. Spectrochim. Acta Part A: Mol. Biomol. Spect., vol. 66(1), pp. 28-36, 2007. [29] H. İlkimen, C. Yenikaya, “Synthesis and characterization of mixed ligand Cu(II) complexes of salicylic acid derivatives with 2 aminobenzotiyazol derivatives”. Pamukkale Univ. J. Eng. Sci., vol. 23(7), pp. 899-907, 2017.
  • [30] D.E. Freedman, W.H. Harman, T.D. Harris, G.J. Long, C.J. Chang, J.R. Long, “Slow magnetic relaxation in a high-spin iron(II) complex”. J. Am. Chem. Soc., vol. 132(4), pp. 1224–1225, 2010.
  • [31] R.R. Jha, P. Mukharjee, “Synthesis and characterization of transition metal complexes with 1,5-diamino2,4-dimethyl-1,5-diaza-1,4-pentadiene”. Asian J. Chem., vol. 1, pp. 641-646, 2007.
  • [32] B.T.S. Baul, K. Nongsiej, A.L. Ka-Ot, S.R. Joshi B.G.M. Rocha, M.F.C. Guedes da Silva, “Synthesis, crystal structures. magnetic properties and antimicrobial screening of octahedral nickel(II) complexes with substituted quinolin-8-olates and pyridine ligands”. J. Mol. Struct., vol. 1200, pp. 127106, 2020.

Proton Transfer Salt and Metal Complexes of 4,4'-Ethylenedipyridine and 2,3-Pyrazinedicarboxylic Acid: Synthesis, Structural Characterization and Biological Activity

Year 2024, Volume: 7 Issue: 2, 103 - 113, 31.12.2024

Abstract

In this study, a new salt {(H2BPE)(PDA), 1} synthesized from 4,4’-ethylenedipyridine (BPE) with 2,3 pyrazinedicarboxylic acid (H2PDA) and its complexes Fe(III) {(H2BPE)[Fe2(PDA)(H2O)4]n, 2} and Ni(II) {[Ni(PDA)(BPE)2(H2O)2]n.H2O, 3}, were synthesized and defined by using 1H and 13C NMR, TG-DTA, IR, UV Vis, elemental analysis, magnetic susceptibility techniques. In addition, antibacterial and antifungal activities of starting materials and synthesized compounds against Candida albicans yeast and Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli and Listeria monocytogenes bacteria were investigated using the microdilution method and compared with existing antibiotics (Cefepime, Vancomycin, Levofloxacin and Fluconazole). Compounds 1-3 were observed to have activity against yeast and bacteria. In particular, compound 3 (7.80 µg/mL) against E. faecalis, compounds 3 (7.80 µg/mL) against B. subtilis bacteria, and compound 1 (15.60 µg/mL) against C. albicans yeast. showed better activity than control compounds.

Project Number

2020-07 ve 2021-42

References

  • [1] Y. Ma, Y.K. He, L.T. Zhang, J.Q. Gao, Z.B. Han, “Synthesis and structure of a new coordination polymer [Cd(pzdc)(bpy)]n (H2pzdc = pyrazine-2,3-dicarboxylic acid. bpy = 2,2′-bipyridine)”. J. Chem. Cryst., vol. 38(4), pp. 267-271, 2008.
  • [2] C.J. Oconnor, C.L. Klein, R.J. Majeste, L.M. Trefonas, “Magnetic properties and crystal structure of (2,3-pyrazinedicarboxylato)copper(II) hydrochloride: a pyrazine bridged ferromagnetic linear chain”. Inorg. Chem., vol. 21(1), pp. 64-67, 1982.
  • [3] J.Y. Lu, “Crystal engineering of Cu-containing metal–organic coordination polymers under hydrothermal conditions,” Coord. Chem. Rev., vol. 246(1-2), pp. 327-347, 2003.
  • [4] Y. Ma, Y.K. He, Z.B. Han, “Catena-poly[[tri­aqua­cadmium(II)]-μ2-pyrazine-2,3-di­carboxyl­ato],” Acta Cryst., vol. E62(10), pp. 2528-2529, 2006.
  • [5] G. Günay, O.Z. Yesilel, C. Darcan, S. Keskin, O. Buyukgungor, “Synthesis. crystal structures. molecular simulations for hydrogen gas adsorption, fluorescent and antimicrobial properties of pyrazine-2,3-dicarboxylate complexes”. Inorg. Chim. Acta, vol. 399, pp. 19-35, 2013.
  • [6] L. Carlucci, G. Ciani, D.M. Proserpio, “Polycatenation. polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev., vol. 246, pp. 247-289, 2003.
  • [7] M. Li, J.F. Xiang, L.J. Yuan, S.M. Wu, S.P. Chen, J.T. Sun, “Syntheses. structures. and photoluminescence of three novel coordination polymers constructed from dimeric d10 metal units. Cryst. Grow. Des., vol. 6, pp. 2036-2040, 2006.
  • [8] T.K. Maji, K. Uemura, H.C. Chang, R. Matsuda, S. Kitagawa, “Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption”. Ang. Chem., vol. 43(25), pp. 3269-3272, 2004.
  • [9] T.K. Maji, G. Mostafa, R. Matsuda, S. Kitagawa, “Guest-induced asymmetry in a metal− organic porous solid with reversible single-crystal-to-single-crystal structural transformation”. J. Am. Chem. Soc., vol. 127(149), pp. 17152-17153, 2005.
  • [10] O.Z. Yesilel, A. Mutlu, O. Buyukgungor, “A new coordination mode of pyrazine-2,3-dicarboxylic acid and its first monodentate complexes: Syntheses, spectral, thermal and structural characterization of [Cu(pzdca)(H2O)(en)2] H2O and [Cu(pzdca)(H2O)(dmpen)2]”. Polyhedron, vol. 27(11), pp. 2471-2477, 2008.
  • [11] O.Z. Yesilel, A. Mutlu, O. Buyukgungor, “Novel dinuclear and polynuclear copper(II)-pyrazine-2,3-dicarboxylate supramolecular complexes with 1,3-propanediamine, N,N,N′,N′-tetramethylethylenediamine and 2,2′-bipyridine”. Polyhedron, vol. 28(3), pp. 437-444, 2009.
  • [12] H. Yin, S.X. Liu, “Copper and zinc complexes with 2,3-pyridinedicarboxylic acid or 2,3-pyrazinedicarboxylic acid: Polymer structures and magnetic properties”. J. Mol. Struct., vol. 918(1-3), pp. 165-173, 2009.[13] R. Kitaura, K. Fujimoto, S.I. Noro, M. Kondo, S. Kitagawa, “A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc= pyrazine-2,3-dicarboxylate; dpyg=1,2-di(4-pyridyl)glycol)”. Ang. Chem., vol. 41(1), pp. 133-135, 2002.
  • [13] R. Kitaura, K. Fujimoto, S.I. Noro, M. Kondo, S. Kitagawa, “A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc= pyrazine-2,3-dicarboxylate; dpyg=1,2-di(4-pyridyl)glycol)”. Ang. Chem., vol. 41(1), pp. 133-135, 2002.
  • [14] J.H. Yang, S.L. Zheng, X.L. Yu, X.M. Chen, “Syntheses. structures. and photoluminescent properties of three silver(I) cluster-based coordination polymers with heteroaryldicarboxylate”. Cryst. Grow. Des., vol. 4(4), pp. 831-836, 2004.
  • [15] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, S. Horike, M. Takata, “Guest shaperesponsive fitting of porous coordination polymer with shrinkable framework”. J. Am. Chem. Soc., vol. 126(43), pp. 14063-14070, 2004.
  • [16] X.M. Lin, L. Chen, H.C. Fang, Z.Y. Zhou, X.X. Zhou, J.Q. Chen, A.W. Xu, Y.P. Cai, “Construction of three one-dimensional zinc(II) complexes containing pyrazine-2,3-dicarboxylic acid”. Inorg. Chim. Acta, vol. 362(8), pp. 2619-2626, 2009.
  • [17] M.J. Fang, M.X. Li, X. He, M. Shao, W. Pang, S.R. Zhu, “Synthesis. structure and thermal stability of ternary metal complexes based on polycarboxylate and N-heterocyclic ligands”. J. Mol. Struct., vol. 921,pp. 137-143, 2009.
  • [18] D.F. Weng, X.J. Zheng, X.B. Chen, L.C. Li, L.P. Jin, “Synthesis, upconversion luminescence and magnetic properties of new lanthanide–organic frameworks with (43)2(46, 66, 83) topology”. Euro. J. Inorg. Chem., vol. 2007(21), pp. 3410-3415, 2007.
  • [19] X.J. Zheng, L.P. Jin, S.Z. Lu, “Hydrothermal syntheses, structures, and properties of first examples of lanthanide(III) 2,3-pyrazinedicarboxylates with three-dimensional framework”. Euro. J. Inorg. Chem., vol. 2002(12), pp. 3356-3363, 2002.
  • [20] K.L. Wong, W.M. Kwok, W.T. Wong, D.L. Phillips, K.W. Cheah, “Green and red three-photon upconversion from polymeric lanthanide(III) complexes”. Ang. Chem., vol. 43(35), pp. 4659-4662, 2004.
  • [21] D. Visinescu, G.I. Pascu, M. Andruh, J. Magull, H.W. Roesky, “A straightforward synthetic route towards tetranuclear copper(II) complexes: reactions between binuclear complexes and exo-bidentate or exobis(bidentate) ligands”. Inorg. Chim. Acta, vol. 340, 201-206, 2002.
  • [22] S. Sain, T.K. Maji, G. Mostafa, T.H. Lu, N.R. Chaudhuri, “A novel layered and pillared topology in a 3D open framework: synthesis. crystal structure and magnetic properties”. New J. hem., vol. 27, pp. 185-187, 2003.
  • [23] N. Buyukkıdan, H. İlkimen, S. Bozyel, M. Sarı, A. Gülbandılar, “The syntheses. structural and biological studies of Co(II) complexes of 1,2-Bis(pyridin-4-yl)ethane with 2-aminobenzene-1,4-disulfonic acid and 2,6-pyridinedicarboxylic acid”. J. Mol. Struct., vol. 1275, pp. 134586, 2023.
  • [24] N. Buyukkıdan, H. İlkimen, S. Bozyel, M. Sarı, A. Gülbandılar, “Two new Cu(II) coordination complexes with 1,2-bis(pyridin-4-yl)ethane bridge-ligand: Synthesis. characterization and antimicrobial activity”. Polyhedron, vol. 223, pp. 115951, 2022.
  • [25] D. Cook, “Vibrational spectra of pyridinium salts”. Canadian J. Chem., vol. 39, pp. 2009-2024, 1961. [26] K. Nakamoto, “Infrared and Raman spectra of inorganic and coordination compounds”. 5th ed. NewYork: Wiley-Interscience, p 232, 1997.
  • [27] K. Sancak, M. Er, Y. Ünver, M. Yildirim, I. Degirmencioglu, “Cu(II), Ni(II) and Fe(II) complexes with a new substituted [1,2,4] triazole Schiff base derived from 4-amino-5-(thien-2-yl ethyl)-2,4-dihydro-3H1,2,4-triazol-3-one and 2-hydroxy-1-naphthaldehyde: synthesis, characterization and a comparison of theoretical and experimental results by Ab inito calculation”. Trans. Metal Chem., vol. 32, pp. 16-22, 2007. [28] M. El-Behery, H. El-Twigry, “Synthesis, magnetic, spectral, and antimicrobial studies of Cu(II), Ni(II) Co(II), Fe(III), and UO2(II) complexes of a new Schiff base hydrazone derived from 7-chloro-4-hydrazinoquinoline”. Spectrochim. Acta Part A: Mol. Biomol. Spect., vol. 66(1), pp. 28-36, 2007. [29] H. İlkimen, C. Yenikaya, “Synthesis and characterization of mixed ligand Cu(II) complexes of salicylic acid derivatives with 2 aminobenzotiyazol derivatives”. Pamukkale Univ. J. Eng. Sci., vol. 23(7), pp. 899-907, 2017.
  • [30] D.E. Freedman, W.H. Harman, T.D. Harris, G.J. Long, C.J. Chang, J.R. Long, “Slow magnetic relaxation in a high-spin iron(II) complex”. J. Am. Chem. Soc., vol. 132(4), pp. 1224–1225, 2010.
  • [31] R.R. Jha, P. Mukharjee, “Synthesis and characterization of transition metal complexes with 1,5-diamino2,4-dimethyl-1,5-diaza-1,4-pentadiene”. Asian J. Chem., vol. 1, pp. 641-646, 2007.
  • [32] B.T.S. Baul, K. Nongsiej, A.L. Ka-Ot, S.R. Joshi B.G.M. Rocha, M.F.C. Guedes da Silva, “Synthesis, crystal structures. magnetic properties and antimicrobial screening of octahedral nickel(II) complexes with substituted quinolin-8-olates and pyridine ligands”. J. Mol. Struct., vol. 1200, pp. 127106, 2020.
There are 29 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Nurgün Büyükkıdan 0000-0001-6879-9355

Seher Kaya 0000-0001-8906-7591

Halil İlkimen 0000-0003-1747-159X

Aysel Gülbandılar 0000-0001-9075-9923

Project Number 2020-07 ve 2021-42
Publication Date December 31, 2024
Submission Date November 5, 2024
Acceptance Date December 5, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Büyükkıdan, N., Kaya, S., İlkimen, H., Gülbandılar, A. (2024). Proton Transfer Salt and Metal Complexes of 4,4’-Ethylenedipyridine and 2,3-Pyrazinedicarboxylic Acid: Synthesis, Structural Characterization and Biological Activity. Bayburt Üniversitesi Fen Bilimleri Dergisi, 7(2), 103-113. https://doi.org/10.55117/bufbd.1579652
AMA Büyükkıdan N, Kaya S, İlkimen H, Gülbandılar A. Proton Transfer Salt and Metal Complexes of 4,4’-Ethylenedipyridine and 2,3-Pyrazinedicarboxylic Acid: Synthesis, Structural Characterization and Biological Activity. Bayburt Üniversitesi Fen Bilimleri Dergisi. December 2024;7(2):103-113. doi:10.55117/bufbd.1579652
Chicago Büyükkıdan, Nurgün, Seher Kaya, Halil İlkimen, and Aysel Gülbandılar. “Proton Transfer Salt and Metal Complexes of 4,4’-Ethylenedipyridine and 2,3-Pyrazinedicarboxylic Acid: Synthesis, Structural Characterization and Biological Activity”. Bayburt Üniversitesi Fen Bilimleri Dergisi 7, no. 2 (December 2024): 103-13. https://doi.org/10.55117/bufbd.1579652.
EndNote Büyükkıdan N, Kaya S, İlkimen H, Gülbandılar A (December 1, 2024) Proton Transfer Salt and Metal Complexes of 4,4’-Ethylenedipyridine and 2,3-Pyrazinedicarboxylic Acid: Synthesis, Structural Characterization and Biological Activity. Bayburt Üniversitesi Fen Bilimleri Dergisi 7 2 103–113.
IEEE N. Büyükkıdan, S. Kaya, H. İlkimen, and A. Gülbandılar, “Proton Transfer Salt and Metal Complexes of 4,4’-Ethylenedipyridine and 2,3-Pyrazinedicarboxylic Acid: Synthesis, Structural Characterization and Biological Activity”, Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 7, no. 2, pp. 103–113, 2024, doi: 10.55117/bufbd.1579652.
ISNAD Büyükkıdan, Nurgün et al. “Proton Transfer Salt and Metal Complexes of 4,4’-Ethylenedipyridine and 2,3-Pyrazinedicarboxylic Acid: Synthesis, Structural Characterization and Biological Activity”. Bayburt Üniversitesi Fen Bilimleri Dergisi 7/2 (December 2024), 103-113. https://doi.org/10.55117/bufbd.1579652.
JAMA Büyükkıdan N, Kaya S, İlkimen H, Gülbandılar A. Proton Transfer Salt and Metal Complexes of 4,4’-Ethylenedipyridine and 2,3-Pyrazinedicarboxylic Acid: Synthesis, Structural Characterization and Biological Activity. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2024;7:103–113.
MLA Büyükkıdan, Nurgün et al. “Proton Transfer Salt and Metal Complexes of 4,4’-Ethylenedipyridine and 2,3-Pyrazinedicarboxylic Acid: Synthesis, Structural Characterization and Biological Activity”. Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 7, no. 2, 2024, pp. 103-1, doi:10.55117/bufbd.1579652.
Vancouver Büyükkıdan N, Kaya S, İlkimen H, Gülbandılar A. Proton Transfer Salt and Metal Complexes of 4,4’-Ethylenedipyridine and 2,3-Pyrazinedicarboxylic Acid: Synthesis, Structural Characterization and Biological Activity. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2024;7(2):103-1.

Indexing