Research Article
BibTex RIS Cite

SOLUTION OF A 1-D CONSERVATION LAWS WITHOUT CONVEXITY

Year 2012, Volume: 5 Issue: 1-2, 49 - 61, 06.05.2015

Abstract

In this paper the exact solution for Cauchy problem of first
order nonlinear partial equation with piece-wise initial condition
described scalar conservation laws without convexity of the
state function. In particular, the state functions having four and
one point of inflection are considered. The structure of solutions
is investigated. 

References

  • Collins, P. Fluids Flow in Porous Materials. 1964.
  • Goritskii, A.A., Krujkov, S.N., Chechkin, G.A. A First Order Quasi-Linear Equations with Partial Differential Derivatives. Pub. Moskow University, Moskow, 1997.
  • Kin, Y.J., Lee, Y., Structure of Fundamental Solutions of a Conservation Laws without Convexity, Applied Mathematics, vol.8, pp. 1-20, 2008.
  • Krushkov, S.N., First Order Quasilinear Equations in Several Independent Variables, Math. USSS Sb., 10, pp.217-243, 1970.
  • Lax, P.D. The Formation and Decay of Shock Waves, Amer. Math Monthly, 79, pp. 227-241, 1972.
  • Lax, P.D. Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computations, Comm. of Pure and App. Math, Vol VII, pp 159-193, 1954.
  • Oleinik, O.A., Discontinuous Solutions of Nonlinear Differential Equations, Usp.Math. Nauk, 12, pp. 3-73, 1957.
  • Rasulov, M.A. On a Method of Solving the Cauchy Problem for a First Order Nonlinear Equation of Hyperbolic Type with a Smooth Initial Condition, Soviet Math. Dok. 43, No.1, 1991.
  • Rasulov, M.A., Conservation Laws in a Class of Discontinuous Functions, Seckin, Istanbul, 2011 (in Turkish).
  • Rasulov, M.A.,.. On a Method of Calculation of the First Phase Saturation During the Process of Displacement of Oil by Water from Porous Medium. App. Mathematics and Computation, vol. 85, Issue l, pp. l-16, 1997.
  • Smoller, J.A., Shock Wave and Reaction Diffusion Equations, Springer-Verlag, New York Inc., 1983.
  • Toro, E.F, Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin Heidelberg, 1999.
  • Whitham, G.B. Linear and Nonlinear Waves, Wiley Int., New York, 1974.

SOLUTION OF A 1-D CONSERVATION LAWS WITHOUT CONVEXITY

Year 2012, Volume: 5 Issue: 1-2, 49 - 61, 06.05.2015

Abstract

Bu makalede bükeyliği olmayan durum fonksiyonuna sahip
birinci mertebeden nonlineer kısmi türevli diferansiyel denklem
için yazılmış parçalı sürekli başlangıç koşullu Cauchy probleminin
gerçek çözümleri elde edilmiştir. Özel olarak, sırasıyla dört ve
bir dönüm noktalarına sahip durum fonksiyonları ele alınmış ve
çözümün yapısı incelenmiştir.

References

  • Collins, P. Fluids Flow in Porous Materials. 1964.
  • Goritskii, A.A., Krujkov, S.N., Chechkin, G.A. A First Order Quasi-Linear Equations with Partial Differential Derivatives. Pub. Moskow University, Moskow, 1997.
  • Kin, Y.J., Lee, Y., Structure of Fundamental Solutions of a Conservation Laws without Convexity, Applied Mathematics, vol.8, pp. 1-20, 2008.
  • Krushkov, S.N., First Order Quasilinear Equations in Several Independent Variables, Math. USSS Sb., 10, pp.217-243, 1970.
  • Lax, P.D. The Formation and Decay of Shock Waves, Amer. Math Monthly, 79, pp. 227-241, 1972.
  • Lax, P.D. Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computations, Comm. of Pure and App. Math, Vol VII, pp 159-193, 1954.
  • Oleinik, O.A., Discontinuous Solutions of Nonlinear Differential Equations, Usp.Math. Nauk, 12, pp. 3-73, 1957.
  • Rasulov, M.A. On a Method of Solving the Cauchy Problem for a First Order Nonlinear Equation of Hyperbolic Type with a Smooth Initial Condition, Soviet Math. Dok. 43, No.1, 1991.
  • Rasulov, M.A., Conservation Laws in a Class of Discontinuous Functions, Seckin, Istanbul, 2011 (in Turkish).
  • Rasulov, M.A.,.. On a Method of Calculation of the First Phase Saturation During the Process of Displacement of Oil by Water from Porous Medium. App. Mathematics and Computation, vol. 85, Issue l, pp. l-16, 1997.
  • Smoller, J.A., Shock Wave and Reaction Diffusion Equations, Springer-Verlag, New York Inc., 1983.
  • Toro, E.F, Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin Heidelberg, 1999.
  • Whitham, G.B. Linear and Nonlinear Waves, Wiley Int., New York, 1974.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mahir Resulov

Mahir Resulov

Bahaddin Sinsoysal

Bahaddin Sınsoysal

Publication Date May 6, 2015
Published in Issue Year 2012 Volume: 5 Issue: 1-2

Cite

APA Resulov, M., Resulov, M., Sinsoysal, B., Sınsoysal, B. (2015). SOLUTION OF A 1-D CONSERVATION LAWS WITHOUT CONVEXITY. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 5(1-2), 49-61.
AMA Resulov M, Resulov M, Sinsoysal B, Sınsoysal B. SOLUTION OF A 1-D CONSERVATION LAWS WITHOUT CONVEXITY. BUJSE. May 2015;5(1-2):49-61.
Chicago Resulov, Mahir, Mahir Resulov, Bahaddin Sinsoysal, and Bahaddin Sınsoysal. “SOLUTION OF A 1-D CONSERVATION LAWS WITHOUT CONVEXITY”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 5, no. 1-2 (May 2015): 49-61.
EndNote Resulov M, Resulov M, Sinsoysal B, Sınsoysal B (May 1, 2015) SOLUTION OF A 1-D CONSERVATION LAWS WITHOUT CONVEXITY. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5 1-2 49–61.
IEEE M. Resulov, M. Resulov, B. Sinsoysal, and B. Sınsoysal, “SOLUTION OF A 1-D CONSERVATION LAWS WITHOUT CONVEXITY”, BUJSE, vol. 5, no. 1-2, pp. 49–61, 2015.
ISNAD Resulov, Mahir et al. “SOLUTION OF A 1-D CONSERVATION LAWS WITHOUT CONVEXITY”. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5/1-2 (May 2015), 49-61.
JAMA Resulov M, Resulov M, Sinsoysal B, Sınsoysal B. SOLUTION OF A 1-D CONSERVATION LAWS WITHOUT CONVEXITY. BUJSE. 2015;5:49–61.
MLA Resulov, Mahir et al. “SOLUTION OF A 1-D CONSERVATION LAWS WITHOUT CONVEXITY”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 5, no. 1-2, 2015, pp. 49-61.
Vancouver Resulov M, Resulov M, Sinsoysal B, Sınsoysal B. SOLUTION OF A 1-D CONSERVATION LAWS WITHOUT CONVEXITY. BUJSE. 2015;5(1-2):49-61.