Research Article
BibTex RIS Cite

Efficiency of singularity and PCA mapping of mineralization-related geochemical anomalies: a comparative study using BLEG and <180μm stream sediment geochemical data

Year 2022, , 11 - 33, 18.08.2022
https://doi.org/10.19111/bulletinofmre.955280

Abstract

In gold (Au) exploration, the analysis of both bulk leach extractable gold (BLEG) and acid-extractable Au in the <180μm stream sediment fraction are the two most common approaches. The Eskişehir- Sivrihisar region in Western Türkiye hosts several orogenic type mineral deposits. The purpose of this study is to delineate geochemical anomalies of ore-related elements and track their dispersion, which may lead to discovery of unknown ore deposits. This research also compares the capability of conventional statistical and principal component analysis (PCA), with concentration area (CA) and number-size/concentration (N-S/C) fractal methods as well as singularity index method to differentiate anomalous and background Au distributions. Known Au mineralization in the region of interest is strongly reflected in stream sediment BLEG Au patterns, which have robust singularity indices with C-A and N-S multifractal modeling and PCA. A hundred % of the Au deposits were detected using either BLEG Au and Ag singularity index mapping with C-A fractal analysis whereas the factor analysis of which revealed 85% efficiency. Several strong Au-Ag anomalies defined by the singularity index and factor analysis in this study requires further follow up for the discovery of new deposits.

Thanks

We would like to express our appreciation to Eurogold Madencilik/Normandy Mining Ltd., Turkey for generous financial support to the project during Hüseyin Yılmaz’s presence in Eurogold as Exploration Manager. Anonymous reviewers are thanked for their invaluable comments in improving the quality of this paper.

References

  • Afzal, P., Khakzad, A., Moarefvand, P., Omran, N. R., Esfandiari, B., Alghalandis, Y. F. 2010. Geochemical anomaly separation by multifractal modeling in Kahang (GorGor) porphyry system, Central Iran. Journal of Geochemical Exploration 104, 34–46.
  • Afzal, P., Alghalandis, Y. F., Khakzad, A., Moarefvand, P., Omran, N. R. 2011. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration 108, 220–232.
  • Afzal, P., Ahari H. D, Omran, N. R, Aliyari F. 2013. Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews 55, 125–133.
  • Agterberg, F. P., Bonham-Carter, G. F., Wright, D. F. 1990. Statistical pattern integration for mineral exploration. Computer applications in resource exploration and assessment for minerals and petroleum. Pergamon, Elmsford.
  • Ahmadi, N. R, Afzal, P., Yasrebi, A. B. 2021. Delineation of gas content zones using N-S fractal model in coking coal deposits. Journal of Mining and Environment 12, 181-189.
  • Ak Yatırım. 2018. Ak Yatırım Madencilik şirket raporu, 4 (unpublished).
  • Aliyari, F. P., Afzal, P., Lotfi, M., Shokri, S. H., Feizi, H. 2020. Delineation of geochemical haloes using the developed zonality index model by multivariate and fractal analysis in the Cu–Mo porphyry deposits. Applied Geochemistry 121, 104694.
  • Altıner, D., Koçyiğit, A., Farinacci, A., Nicossia, U., Conti, M. A. 1991. Jurassic, Lower Cretaceous stratigraphy and paleogeographic evolution of the southern part of north-western Anatolia. Geologica Romana 28, 13-80.
  • Arias, M., Gumiel, P., Martín-Izard, A. 2012. Multifractal analysis of geochemical anomalies: a tool for assessing prospectivity at the SE border of the Ossa Morena Zone, Variscan Massif (Spain). Journal of Geochemical Exploration 122, 101- 112.
  • Bonham-Carter, G. F., Rogers, P. J., Ellwood, D. J. 1987. Catchment basin analysis applied to surficial geochemical data, Cobequid Highlands, Nova Scotia. Journal of Geochemical Exploration 29, 259-278.
  • Carranza, E. J. M. 2010a. Catchment basin modelling of stream sediment anomalies re-visited: incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis 10, 365-381.
  • Carranza, E. J. M. 2010b. Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis 10, 171–187.
  • Cheng, Q. 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews 32, 314-324.
  • Cheng, Q., Agterberg, F. P., Ballantyne, S. B. 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration 51, 109-130.
  • Cheng, Q., Agterberg, F. P., Bonham-Carter, G. F. 1996. A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration 56, 183–195.
  • Cheng, Q., Xu, Y., Grunsky, E. 1999. Integrated spatial and spectral analysis for geochemical anomaly separation. Proceeding of the Fifth Annual Conference of the International Association for Mathematical Geology, Trondheim, Norway 6–11th August.
  • Cheng, Q., Xu, Y., Grunsky, E. C. 2000. Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research 9, 43–52.
  • Daneshvar, S. L. 2017. Delineation of enriched zones of Mo, Cu and Re by concentration volume fractal model in Nowchun Mo-Cu porphyry deposit, SE Iran. Iranian Journal of Earth Sciences 9, 64- 72.
  • Eurogold, 1996. Review report on gold anomalies and prospects generated between 1991 and 1996 in western Turkey, Unpublished Company Report, 200.
  • Govett, G. J. S., Goodfellow, W. D., Chapman, A., Chor, C.Y. 1975. Exploration geochemistry-distribution of elements and recognition of anomalies. Mathematical Geology 7, 415–446.
  • Grunsky, E. C. 2007. The interpretation of regional geochemical survey data. Advances in Regional- Scale Geochemical Methods 8, 139–182.
  • Grunsky, E. 2010. The interpretation of geochemical survey data. Geochemistry: Exploration, Environment, Analysis 10, 27–74.
  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., Shraiman, B. I. 1986. Fractal measures and their singularities: the characterization of strange sets. Physics Review 33, 1141–1151.
  • Hawkes, H. E. 1976. The downstream dilution of stream sediment anomalies. Journal of Geochemical Exploration 6, 345–358.
  • Howarth, R. J. 1983. Mapping. Statistics and Data Analysis I Geochemical Prospecting, Handbook of Exploration Geochemistry 2. Elsevier, Amsterdam, 111–205.
  • Koza Gold. 2013. Koza Gold Company activity report, 54 (unpublished).
  • Koza Gold. 2014. Koza Gold Company activity report, 63 (unpublished)
  • Koza Gold. 2016. Koza Gold Company activity report, 97 (unpublished)
  • Luz, F., Mateus, A., Matos, J. X., Gonçalves, M. A. 2014. Cu-and Zn-soil anomalies in the NE border of the South Portuguese Meier Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research 23, 195-215.
  • Mandelbrot, B. B. 1983. The Fractal Geometry of Nature.Freeman, New York, 495.
  • Mirzaie, M., Afzal, P., Adib, A., Rahimi, E., Mohammadi, G. 2020. Detection of zones based on ore and gangue using fractal and multivariate analysis in Chah Gaz iron ore deposit, Central Iran. Journal of Mining and Environment 11, 453-466.
  • MTA. 1965. Tungsten and molybdenum deposits of Turkey. General Directorate of Mineral Research and Exploration Publications No. 128, Ankara, Turkey.
  • MTA. 1970. Arsenic, mercury, antimony and gold deposits of Turkey. General Directorate of Mineral Research and Exploration Publication No. 129, Ankara, Turkey.
  • MTA. 2002. 1:500000 Geological map of Turkey. General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • Okay, A. I., Satır, M. 2000. Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine 137, 495–516.
  • Okay, A. I., Satır, M., Maluski, H., Siyako, M., Monie, P., Metzger, R., Akyüz, S. 1996. Paleo- and Neo- Tethyan events in northwest Turkey: geological and geochronological constraints. Tectonics of Asia. Cambridge University Press, 420–441.
  • Özgenç, I. 1993. Kızılcaören (Sivrihisar-Eskişehir) karbotermal bastneazit-fluorit-barit yatağının jeolojisi ve nadir toprak element jeokimyası. Geological Bulletin of Turkey 36, 1–11.
  • Parlak, B., Sayılı, S. 2012. Fluid inclusion data on quartz and calcite in alteration zones of polymetallic mineralizations at Mayıslar Area (Sarıcakaya- Eskişehir, Turkey). Geological Bulletin of Turkey 55, 111−132.
  • Parsa, M., Maghsoudi, A., Ghezelbash, R. 2016. Decomposition of anomaly patterns of multi- element geochemical signatures in Ahar area, NW Iran: a comparison of U-spatial statistics and fractal models. Arabian Journal of Geosciences 9, 1-16.
  • Parsa, M., Maghsoudi, A., Yousefi, M., Sadeghi, M. 2017a. Multifractal analysis of stream sediment geochemical data: implications for hydrothermal nickel prospection in an arid terrain, eastern Iran. Journal of Geochemical Exploration 18, 305-317.
  • Parsa, M., Maghsoudi, A., Yousefi, M., Carranza, E. J. M. 2017b. Multifractal interpolation and spectrum– area fractal modeling of stream sediment geochemical data: implications for mapping exploration targets. Journal of African Earth Sciences 128, 5-15.
  • Ren, L., Cohen, D. R., Rutherford, N. F., Zissimos, A. M., Morisseau, E. G. 2015. Reflections of the geological characteristics of Cyprus in soil rare earth element patterns. Applied Geochemistry 56, 80–93.
  • Sadeghi, B., Madani, N., Carranza, E. J. M. 2015. Combination of geostatistical simulation and fractal modeling for mineral resource classification. Journal Geochemical of Exploration 149, 59–73.
  • Shen, W., Cohen, D. R. 2005. Fractally invariant distributions and an application in geochemical exploration. Mathematical Geology 37, 895–909.
  • Shuguang, Z., Kefa, Z., Yao, C., Jinlin, W., Jianli, D. 2015. Exploratory data analysis and singularity mapping in geochemical anomaly identification in Karamay, Xinjiang, China. Journal of Geochemical Exploration 154, 171-179.
  • Sinclair, A. J. 1991. A fundamental approach to threshold estimation in exploration geochemistry: Probability plots revisited. Journal of Geochemical Exploration 41, 1–22.
  • Wang, W., Cheng, Q., Zhang, S., Zhao, J. 2018. Anisotropic singularity:Anovel way to characterize controlling effects of geological processes on mineralization. Journal of Geochemical Exploration 189, 32–41
  • Yasrebi, A. B., Hezarkhani, A. 2019. Resources classification using fractal modelling in Eastern Kahang Cu-Mo porphyry deposit, Central Iran. Iranian Journal of Earth Sciences 11, 56-67.
  • Yılmaz, H. 2003. Geochemical exploration for gold in western Turkey: success and failure. Journal of Geochemical Exploration 80, 117-135.
  • Yılmaz, H., Mahyar, Y., Parsa, M., Sonmez, F. N., Maghsoodi, A. 2019. Singularity mapping of bulk leach extractable gold and -80# < 180µm stream sediment geochemical data in recognition of gold and base metal mineralization footprints in Biga Peninsula South, Turkey. Journal of African Earth Sciences 153, 156-172.
  • Yousefi, M. 2017a. Analysis of zoning pattern of geochemical indicators for targeting of porphyry Cu mineralization: A pixel-based mapping approach. Natural Resources Research 26, 429–441.
  • Yousefi, M. 2017b. Recognition of an enhanced multi- element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews 83, 200-214.
  • Yuan, F., Li, X., Zhou, T., Deng, Y., Zhang, D., Xu, C., Zhang, R., Jia, C., Jowitt, S. M. 2015. Multifractal modeling-based mapping and identification of geochemical anomalies associated with Cu and Au mineralization in the NW Junggar area of northern Xinjiang Province, Gangdese Belt, Tibet (China). Journal of Geochemical Exploration 154, 252-264.
  • Zadmehr, F., Shahrokhi, S. V. 2019. Separation of geochemical anomalies by concentration-area and concentration-number methods in the Saqez 1/100.000 sheet. Iranian Journal of Earth Sciences 11, 196-204.
  • Zuo, R. 2011. Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration 111, 13–22.
  • Zuo, R., Wang, J. 2016. Fractal/multifractal modeling of geochemical data: a review. Journal of Geochemical Exploration 164, 33-41.
  • Zuo, R., Xia, Q., Wang, H. 2013. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Applied Geochemistry 28, 202-211.
  • Zuo, R., Xia, Q., Wang, H. 2015. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization.Applied. Geochemistry 28, 202–211.
  • Reimann, C., Filzmoser, P. 2000. Normal and lognormal data distribution in geochemistry: death of a myth, consequences for the statistical treatment of geochemical and environmental data. Environmental Geology 39, 1001–1014.
  • Ren, L., Cohen, D. R., Rutherford, N. F., Zissimos, A. M., Morisseau, E. G. 2015. Reflections of the geological characteristics of Cyprus in soil rare earth element patterns. Applied Geochemistry 56,
Year 2022, , 11 - 33, 18.08.2022
https://doi.org/10.19111/bulletinofmre.955280

Abstract

References

  • Afzal, P., Khakzad, A., Moarefvand, P., Omran, N. R., Esfandiari, B., Alghalandis, Y. F. 2010. Geochemical anomaly separation by multifractal modeling in Kahang (GorGor) porphyry system, Central Iran. Journal of Geochemical Exploration 104, 34–46.
  • Afzal, P., Alghalandis, Y. F., Khakzad, A., Moarefvand, P., Omran, N. R. 2011. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration 108, 220–232.
  • Afzal, P., Ahari H. D, Omran, N. R, Aliyari F. 2013. Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews 55, 125–133.
  • Agterberg, F. P., Bonham-Carter, G. F., Wright, D. F. 1990. Statistical pattern integration for mineral exploration. Computer applications in resource exploration and assessment for minerals and petroleum. Pergamon, Elmsford.
  • Ahmadi, N. R, Afzal, P., Yasrebi, A. B. 2021. Delineation of gas content zones using N-S fractal model in coking coal deposits. Journal of Mining and Environment 12, 181-189.
  • Ak Yatırım. 2018. Ak Yatırım Madencilik şirket raporu, 4 (unpublished).
  • Aliyari, F. P., Afzal, P., Lotfi, M., Shokri, S. H., Feizi, H. 2020. Delineation of geochemical haloes using the developed zonality index model by multivariate and fractal analysis in the Cu–Mo porphyry deposits. Applied Geochemistry 121, 104694.
  • Altıner, D., Koçyiğit, A., Farinacci, A., Nicossia, U., Conti, M. A. 1991. Jurassic, Lower Cretaceous stratigraphy and paleogeographic evolution of the southern part of north-western Anatolia. Geologica Romana 28, 13-80.
  • Arias, M., Gumiel, P., Martín-Izard, A. 2012. Multifractal analysis of geochemical anomalies: a tool for assessing prospectivity at the SE border of the Ossa Morena Zone, Variscan Massif (Spain). Journal of Geochemical Exploration 122, 101- 112.
  • Bonham-Carter, G. F., Rogers, P. J., Ellwood, D. J. 1987. Catchment basin analysis applied to surficial geochemical data, Cobequid Highlands, Nova Scotia. Journal of Geochemical Exploration 29, 259-278.
  • Carranza, E. J. M. 2010a. Catchment basin modelling of stream sediment anomalies re-visited: incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis 10, 365-381.
  • Carranza, E. J. M. 2010b. Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis 10, 171–187.
  • Cheng, Q. 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews 32, 314-324.
  • Cheng, Q., Agterberg, F. P., Ballantyne, S. B. 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration 51, 109-130.
  • Cheng, Q., Agterberg, F. P., Bonham-Carter, G. F. 1996. A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration 56, 183–195.
  • Cheng, Q., Xu, Y., Grunsky, E. 1999. Integrated spatial and spectral analysis for geochemical anomaly separation. Proceeding of the Fifth Annual Conference of the International Association for Mathematical Geology, Trondheim, Norway 6–11th August.
  • Cheng, Q., Xu, Y., Grunsky, E. C. 2000. Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research 9, 43–52.
  • Daneshvar, S. L. 2017. Delineation of enriched zones of Mo, Cu and Re by concentration volume fractal model in Nowchun Mo-Cu porphyry deposit, SE Iran. Iranian Journal of Earth Sciences 9, 64- 72.
  • Eurogold, 1996. Review report on gold anomalies and prospects generated between 1991 and 1996 in western Turkey, Unpublished Company Report, 200.
  • Govett, G. J. S., Goodfellow, W. D., Chapman, A., Chor, C.Y. 1975. Exploration geochemistry-distribution of elements and recognition of anomalies. Mathematical Geology 7, 415–446.
  • Grunsky, E. C. 2007. The interpretation of regional geochemical survey data. Advances in Regional- Scale Geochemical Methods 8, 139–182.
  • Grunsky, E. 2010. The interpretation of geochemical survey data. Geochemistry: Exploration, Environment, Analysis 10, 27–74.
  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., Shraiman, B. I. 1986. Fractal measures and their singularities: the characterization of strange sets. Physics Review 33, 1141–1151.
  • Hawkes, H. E. 1976. The downstream dilution of stream sediment anomalies. Journal of Geochemical Exploration 6, 345–358.
  • Howarth, R. J. 1983. Mapping. Statistics and Data Analysis I Geochemical Prospecting, Handbook of Exploration Geochemistry 2. Elsevier, Amsterdam, 111–205.
  • Koza Gold. 2013. Koza Gold Company activity report, 54 (unpublished).
  • Koza Gold. 2014. Koza Gold Company activity report, 63 (unpublished)
  • Koza Gold. 2016. Koza Gold Company activity report, 97 (unpublished)
  • Luz, F., Mateus, A., Matos, J. X., Gonçalves, M. A. 2014. Cu-and Zn-soil anomalies in the NE border of the South Portuguese Meier Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research 23, 195-215.
  • Mandelbrot, B. B. 1983. The Fractal Geometry of Nature.Freeman, New York, 495.
  • Mirzaie, M., Afzal, P., Adib, A., Rahimi, E., Mohammadi, G. 2020. Detection of zones based on ore and gangue using fractal and multivariate analysis in Chah Gaz iron ore deposit, Central Iran. Journal of Mining and Environment 11, 453-466.
  • MTA. 1965. Tungsten and molybdenum deposits of Turkey. General Directorate of Mineral Research and Exploration Publications No. 128, Ankara, Turkey.
  • MTA. 1970. Arsenic, mercury, antimony and gold deposits of Turkey. General Directorate of Mineral Research and Exploration Publication No. 129, Ankara, Turkey.
  • MTA. 2002. 1:500000 Geological map of Turkey. General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • Okay, A. I., Satır, M. 2000. Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine 137, 495–516.
  • Okay, A. I., Satır, M., Maluski, H., Siyako, M., Monie, P., Metzger, R., Akyüz, S. 1996. Paleo- and Neo- Tethyan events in northwest Turkey: geological and geochronological constraints. Tectonics of Asia. Cambridge University Press, 420–441.
  • Özgenç, I. 1993. Kızılcaören (Sivrihisar-Eskişehir) karbotermal bastneazit-fluorit-barit yatağının jeolojisi ve nadir toprak element jeokimyası. Geological Bulletin of Turkey 36, 1–11.
  • Parlak, B., Sayılı, S. 2012. Fluid inclusion data on quartz and calcite in alteration zones of polymetallic mineralizations at Mayıslar Area (Sarıcakaya- Eskişehir, Turkey). Geological Bulletin of Turkey 55, 111−132.
  • Parsa, M., Maghsoudi, A., Ghezelbash, R. 2016. Decomposition of anomaly patterns of multi- element geochemical signatures in Ahar area, NW Iran: a comparison of U-spatial statistics and fractal models. Arabian Journal of Geosciences 9, 1-16.
  • Parsa, M., Maghsoudi, A., Yousefi, M., Sadeghi, M. 2017a. Multifractal analysis of stream sediment geochemical data: implications for hydrothermal nickel prospection in an arid terrain, eastern Iran. Journal of Geochemical Exploration 18, 305-317.
  • Parsa, M., Maghsoudi, A., Yousefi, M., Carranza, E. J. M. 2017b. Multifractal interpolation and spectrum– area fractal modeling of stream sediment geochemical data: implications for mapping exploration targets. Journal of African Earth Sciences 128, 5-15.
  • Ren, L., Cohen, D. R., Rutherford, N. F., Zissimos, A. M., Morisseau, E. G. 2015. Reflections of the geological characteristics of Cyprus in soil rare earth element patterns. Applied Geochemistry 56, 80–93.
  • Sadeghi, B., Madani, N., Carranza, E. J. M. 2015. Combination of geostatistical simulation and fractal modeling for mineral resource classification. Journal Geochemical of Exploration 149, 59–73.
  • Shen, W., Cohen, D. R. 2005. Fractally invariant distributions and an application in geochemical exploration. Mathematical Geology 37, 895–909.
  • Shuguang, Z., Kefa, Z., Yao, C., Jinlin, W., Jianli, D. 2015. Exploratory data analysis and singularity mapping in geochemical anomaly identification in Karamay, Xinjiang, China. Journal of Geochemical Exploration 154, 171-179.
  • Sinclair, A. J. 1991. A fundamental approach to threshold estimation in exploration geochemistry: Probability plots revisited. Journal of Geochemical Exploration 41, 1–22.
  • Wang, W., Cheng, Q., Zhang, S., Zhao, J. 2018. Anisotropic singularity:Anovel way to characterize controlling effects of geological processes on mineralization. Journal of Geochemical Exploration 189, 32–41
  • Yasrebi, A. B., Hezarkhani, A. 2019. Resources classification using fractal modelling in Eastern Kahang Cu-Mo porphyry deposit, Central Iran. Iranian Journal of Earth Sciences 11, 56-67.
  • Yılmaz, H. 2003. Geochemical exploration for gold in western Turkey: success and failure. Journal of Geochemical Exploration 80, 117-135.
  • Yılmaz, H., Mahyar, Y., Parsa, M., Sonmez, F. N., Maghsoodi, A. 2019. Singularity mapping of bulk leach extractable gold and -80# < 180µm stream sediment geochemical data in recognition of gold and base metal mineralization footprints in Biga Peninsula South, Turkey. Journal of African Earth Sciences 153, 156-172.
  • Yousefi, M. 2017a. Analysis of zoning pattern of geochemical indicators for targeting of porphyry Cu mineralization: A pixel-based mapping approach. Natural Resources Research 26, 429–441.
  • Yousefi, M. 2017b. Recognition of an enhanced multi- element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews 83, 200-214.
  • Yuan, F., Li, X., Zhou, T., Deng, Y., Zhang, D., Xu, C., Zhang, R., Jia, C., Jowitt, S. M. 2015. Multifractal modeling-based mapping and identification of geochemical anomalies associated with Cu and Au mineralization in the NW Junggar area of northern Xinjiang Province, Gangdese Belt, Tibet (China). Journal of Geochemical Exploration 154, 252-264.
  • Zadmehr, F., Shahrokhi, S. V. 2019. Separation of geochemical anomalies by concentration-area and concentration-number methods in the Saqez 1/100.000 sheet. Iranian Journal of Earth Sciences 11, 196-204.
  • Zuo, R. 2011. Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration 111, 13–22.
  • Zuo, R., Wang, J. 2016. Fractal/multifractal modeling of geochemical data: a review. Journal of Geochemical Exploration 164, 33-41.
  • Zuo, R., Xia, Q., Wang, H. 2013. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Applied Geochemistry 28, 202-211.
  • Zuo, R., Xia, Q., Wang, H. 2015. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization.Applied. Geochemistry 28, 202–211.
  • Reimann, C., Filzmoser, P. 2000. Normal and lognormal data distribution in geochemistry: death of a myth, consequences for the statistical treatment of geochemical and environmental data. Environmental Geology 39, 1001–1014.
  • Ren, L., Cohen, D. R., Rutherford, N. F., Zissimos, A. M., Morisseau, E. G. 2015. Reflections of the geological characteristics of Cyprus in soil rare earth element patterns. Applied Geochemistry 56,
There are 60 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fatma Nuran Sönmez This is me 0000-0001-7567-047X

Simay Koçkar This is me 0000-0002-7698-1306

Hüseyin Yılmaz This is me 0000-0002-1071-394X

Publication Date August 18, 2022
Published in Issue Year 2022

Cite

APA Sönmez, F. N., Koçkar, S., & Yılmaz, H. (2022). Efficiency of singularity and PCA mapping of mineralization-related geochemical anomalies: a comparative study using BLEG and <180μm stream sediment geochemical data. Bulletin of the Mineral Research and Exploration, 168(168), 11-33. https://doi.org/10.19111/bulletinofmre.955280
AMA Sönmez FN, Koçkar S, Yılmaz H. Efficiency of singularity and PCA mapping of mineralization-related geochemical anomalies: a comparative study using BLEG and <180μm stream sediment geochemical data. Bull.Min.Res.Exp. August 2022;168(168):11-33. doi:10.19111/bulletinofmre.955280
Chicago Sönmez, Fatma Nuran, Simay Koçkar, and Hüseyin Yılmaz. “Efficiency of Singularity and PCA Mapping of Mineralization-Related Geochemical Anomalies: A Comparative Study Using BLEG and <180μm Stream Sediment Geochemical Data”. Bulletin of the Mineral Research and Exploration 168, no. 168 (August 2022): 11-33. https://doi.org/10.19111/bulletinofmre.955280.
EndNote Sönmez FN, Koçkar S, Yılmaz H (August 1, 2022) Efficiency of singularity and PCA mapping of mineralization-related geochemical anomalies: a comparative study using BLEG and <180μm stream sediment geochemical data. Bulletin of the Mineral Research and Exploration 168 168 11–33.
IEEE F. N. Sönmez, S. Koçkar, and H. Yılmaz, “Efficiency of singularity and PCA mapping of mineralization-related geochemical anomalies: a comparative study using BLEG and <180μm stream sediment geochemical data”, Bull.Min.Res.Exp., vol. 168, no. 168, pp. 11–33, 2022, doi: 10.19111/bulletinofmre.955280.
ISNAD Sönmez, Fatma Nuran et al. “Efficiency of Singularity and PCA Mapping of Mineralization-Related Geochemical Anomalies: A Comparative Study Using BLEG and <180μm Stream Sediment Geochemical Data”. Bulletin of the Mineral Research and Exploration 168/168 (August 2022), 11-33. https://doi.org/10.19111/bulletinofmre.955280.
JAMA Sönmez FN, Koçkar S, Yılmaz H. Efficiency of singularity and PCA mapping of mineralization-related geochemical anomalies: a comparative study using BLEG and <180μm stream sediment geochemical data. Bull.Min.Res.Exp. 2022;168:11–33..
MLA Sönmez, Fatma Nuran et al. “Efficiency of Singularity and PCA Mapping of Mineralization-Related Geochemical Anomalies: A Comparative Study Using BLEG and <180μm Stream Sediment Geochemical Data”. Bulletin of the Mineral Research and Exploration, vol. 168, no. 168, 2022, pp. 11-33, doi:10.19111/bulletinofmre.955280.
Vancouver Sönmez FN, Koçkar S, Yılmaz H. Efficiency of singularity and PCA mapping of mineralization-related geochemical anomalies: a comparative study using BLEG and <180μm stream sediment geochemical data. Bull.Min.Res.Exp. 2022;168(168):11-33.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en