Research Article
BibTex RIS Cite

Uncertainty-volume fractal model for delineating copper mineralization controllers using geostatistical simulation in Nohkouhi volcanogenic massive sulfide deposit, Central Iran

Year 2020, Volume: 161 Issue: 161, 1 - 11, 15.04.2020
https://doi.org/10.19111/bulletinofmre.495753

Abstract

The aim of this study was to delineate copper mineralization controllers in Nohkouhi volcanogenic massive sulfide (VMS) deposit by using geostatistical and fractal simulation. In this study, concentration-volume (C-V) fractal model has been used to indicate various copper populations related to different host rocks and copper minerals. Accordingly, uncertainty-volume (U-V) fractal model was applied to probability values achieved through sequential indicator simulation (SIS). Copper ores of Nohkouhi deposit including chalcopyrite and malachite were simulated in 30 realizations. The U-V fractal model obtained by using a probability map was divided into four probability zones (high, moderate, low, and very low) for copper minerals. Furthermore, copper grades were simulated for 10 times by sequential Gaussian simulation (SGS). Combination of C–V and U-V fractal modeling resulted in a hybrid method which could be properly employed to determinate various mineralization zones based on the relationship between quantitative (e.g.copper grade) and qualitative (e.g. copper minerals) variables. Moreover, integrating the results of C–V and U-V fractal modeling with the most frequent occurrence of rock type modeling helps identify copper mineralization controllers in a VMS deposit.

Thanks

The authors are grateful to Zarmesh Group for providing the dataset used in this study

References

  • Afzal, P., Alghalandis, Y.F., Khakzad, A., Moarefvand, P., Omran, N.R. 2011. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration 108(3), pp.220-232.
  • Afzal, P., Ahari, H.D., Omran, N.R., Aliyari, F. 2013. Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews 55, pp.125-133.
  • Afzal, P., Alhoseini, S.H., Tokhmechi, B., Ahangaran, D.K., Yasrebi, A.B., Madani, N., Wetherelt, A. 2014. Outlining of high quality coking coal by concentration–volume fractal model and turning bands simulation in East-Parvadeh coal deposit, Central Iran. International Journal of Coal Geology 127, pp.88-99.
  • Afzal, P., Madani, N., Shahbeik, S., Yasrebi, A.B. 2015. Multi-Gaussian kriging: a practice to enhance delineation of mineralized zones by Concentration–Volume fractal model in Dardevey iron ore deposit, SE Iran. Journal of Geochemical Exploration 158, pp.10-21.
  • Afzal, P., Tehrani, M.E., Ghaderi, M., Hosseini, M.R. 2016. Delineation of supergene enrichment, hypogene and oxidation zones utilizing staged factor analysis and fractal modeling in Takht-e- Gonbad porphyry deposit, SE Iran. Journal of Geochemical Exploration, 161, pp.119-127.
  • Carranza, E.J.M. 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews 35(3), pp.383- 400.
  • Carranza, E.J.M. 2011. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration 110(2), pp.167-185.
  • Cheng, Q. 1999. Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration 65(3), pp.175-194.
  • Cheng, Q., Agterberg, F.P., Ballantyne, S.B. 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration 51(2), pp.109-130.
  • Chilés, J.P., Delfiner, P. 2012. Geostatistics: modeling spatial uncertainty (Vol. 497). John Wiley & Sons.
  • Daneshvar Saein, L., Rasa, I., Rashidnejad Omran, N., Moarefvand, P., Afzal, P. 2012. Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran. Nonlinear Processes in Geophysics 19(4), pp.431-438.
  • Delavar, S.T., Afzal, P., Borg, G., Rasa, I., Lotfi, M., Omran, N.R. 2012. Delineation of mineralization zones using concentration–volume fractal method in Pb–Zn carbonate hosted deposits. Journal of Geochemical Exploration 118, pp.98-110.
  • Deutsch, C.V., Journel, A.G. 1998. Geostatistical software library and user’s guide. Oxford University Press, New York.
  • Goncalves, M.A., Mateus, A., Oliveira, V. 2001. Geochemical anomaly separation by multifractal modelling. Journal of Geochemical Exploration 72(2), pp.91-114.
  • Goovaerts, P. 1996. Geostatistics for natural resources evaluation. Oxford University Press on Demand.
  • Gumiel, P., Sanderson, D.J., Arias, M., Roberts, S. Martín- Izard, A. 2010. Analysis of the fractal clustering of ore deposits in the Spanish Iberian Pyrite Belt. Ore Geology Reviews 38(4), pp.307-318.
  • Hajsadeghi, S., Asghari, O., Mirmohammadi, M., Meshkani, S.A. 2016. Indirect rock type modeling using geostatistical simulation of independent components in Nohkouhi volcanogenic massive sulfide deposit, Iran. Journal of Geochemical Exploration 168, pp.137-149.
  • Hajsadeghi, S., Mirmohammadi, M., Asghari, O., Meshkani, S.A. 2017. Geology and mineralization at the copper-rich volcanogenic massive sulfide deposit in Nohkouhi, Posht-e-Badam block, Central Iran. Ore Geology Review doi:https://doi. org/10.1016/j.oregeorev.2017.11.030.
  • Hassanpour, S., Afzal, P. 2013. Application of concentration– number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences 6(3), pp.957-970.
  • Journel, A.G. 1983. Nonparametric estimation of spatial distributions. Journal of the International Association for Mathematical Geology 15(3), pp.445-468.
  • Journel, A.G., Isaaks, E.H. 1984. Conditional indicator simulation: Application to a Sachatchewan uranium deposits. Marhematical Geology 16 (7):685-718.
  • Karmania, A. 2013.Company, Preliminary Exploration Report in Nohkouhi Area, Tehran (73 pp., (In Persian)).
  • Li, C., Ma, T., Shi, J. 2003. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration 77(2), pp.167-175.
  • Lin, X., Zhang, B., Wang, X. 2014. Application of factor analysis and concentration-volume fractal modeling to delineation of 3D geochemical patterns: a case study of the Jinwozi gold field, NW China. Geochemistry: Exploration, Environment, Analysis 14(4), pp.359-367.
  • Mandelbrot, B.B. 1983. The fractal geometry of nature (Vol. 173). Macmillan.
  • Rahmati, A., Afzal, P., Abrishamifar, S.A., Sadeghi, B. 2015. Application of concentration–number and concentration–volume fractal models to delineate mineralized zones in the Sheytoor iron deposit, Central Iran. Arabian Journal of Geosciences 8(5), pp.2953-2965.
  • Rezaei, S., Lotfi, M., Afzal, P., Jafari, M.R., Meigoony, M.S. 2015. Delineation of Cu prospects utilizing multifractal modeling and stepwise factor analysis in Noubaran 1: 100,000 sheet, Center of Iran. Arabian Journal of Geosciences 8(9), pp.7343- 7357.
  • Rossi, M.E., Deutsch, C.V. 2013. Mineral resource estimation. Springer Science & Business Media.
  • Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A.B., Saein, L.D. 2012. Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration 122, pp.9-19.
  • Sadeghi, B., Madani, N., Carranza, E.J.M. 2015. Combination of geostatistical simulation and fractal modeling for mineral resource classification. Journal of Geochemical Exploration 149, pp.59-73.
  • Sahandi, M. R., Soheily, M., Sadeghi, M., Delavar, S.T., Jafari Rad, A. 2002. Geological Map of Iran, 1:1,000,000. Geological Survey of Iran, Tehran, Unpublished
  • Soltani, F., Afzal, P., Asghari, O. 2014. Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran. Journal of Geochemical Exploration 140, pp.64-76.
  • Sun, T., Liu, L. 2014. Delineating the complexity of Cu– Mo mineralization in a porphyry intrusion by computational and fractal modeling: A case study of the Chehugou deposit in the Chifeng district, Inner Mongolia, China. Journal of Geochemical Exploration 144, pp.128-143.
  • Yasrebi, A.B., Afzal, P., Wetherelt, A., Foster, P., Esfahanipour, R. 2013. Correlation between geology and concentration-volume fractal models: significance for Cu and Mo mineralized zones separation in the Kahang porphyry deposit (Central Iran). Geologica Carpathica 64(2), pp.153-163.
Year 2020, Volume: 161 Issue: 161, 1 - 11, 15.04.2020
https://doi.org/10.19111/bulletinofmre.495753

Abstract

References

  • Afzal, P., Alghalandis, Y.F., Khakzad, A., Moarefvand, P., Omran, N.R. 2011. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration 108(3), pp.220-232.
  • Afzal, P., Ahari, H.D., Omran, N.R., Aliyari, F. 2013. Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews 55, pp.125-133.
  • Afzal, P., Alhoseini, S.H., Tokhmechi, B., Ahangaran, D.K., Yasrebi, A.B., Madani, N., Wetherelt, A. 2014. Outlining of high quality coking coal by concentration–volume fractal model and turning bands simulation in East-Parvadeh coal deposit, Central Iran. International Journal of Coal Geology 127, pp.88-99.
  • Afzal, P., Madani, N., Shahbeik, S., Yasrebi, A.B. 2015. Multi-Gaussian kriging: a practice to enhance delineation of mineralized zones by Concentration–Volume fractal model in Dardevey iron ore deposit, SE Iran. Journal of Geochemical Exploration 158, pp.10-21.
  • Afzal, P., Tehrani, M.E., Ghaderi, M., Hosseini, M.R. 2016. Delineation of supergene enrichment, hypogene and oxidation zones utilizing staged factor analysis and fractal modeling in Takht-e- Gonbad porphyry deposit, SE Iran. Journal of Geochemical Exploration, 161, pp.119-127.
  • Carranza, E.J.M. 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews 35(3), pp.383- 400.
  • Carranza, E.J.M. 2011. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration 110(2), pp.167-185.
  • Cheng, Q. 1999. Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration 65(3), pp.175-194.
  • Cheng, Q., Agterberg, F.P., Ballantyne, S.B. 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration 51(2), pp.109-130.
  • Chilés, J.P., Delfiner, P. 2012. Geostatistics: modeling spatial uncertainty (Vol. 497). John Wiley & Sons.
  • Daneshvar Saein, L., Rasa, I., Rashidnejad Omran, N., Moarefvand, P., Afzal, P. 2012. Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran. Nonlinear Processes in Geophysics 19(4), pp.431-438.
  • Delavar, S.T., Afzal, P., Borg, G., Rasa, I., Lotfi, M., Omran, N.R. 2012. Delineation of mineralization zones using concentration–volume fractal method in Pb–Zn carbonate hosted deposits. Journal of Geochemical Exploration 118, pp.98-110.
  • Deutsch, C.V., Journel, A.G. 1998. Geostatistical software library and user’s guide. Oxford University Press, New York.
  • Goncalves, M.A., Mateus, A., Oliveira, V. 2001. Geochemical anomaly separation by multifractal modelling. Journal of Geochemical Exploration 72(2), pp.91-114.
  • Goovaerts, P. 1996. Geostatistics for natural resources evaluation. Oxford University Press on Demand.
  • Gumiel, P., Sanderson, D.J., Arias, M., Roberts, S. Martín- Izard, A. 2010. Analysis of the fractal clustering of ore deposits in the Spanish Iberian Pyrite Belt. Ore Geology Reviews 38(4), pp.307-318.
  • Hajsadeghi, S., Asghari, O., Mirmohammadi, M., Meshkani, S.A. 2016. Indirect rock type modeling using geostatistical simulation of independent components in Nohkouhi volcanogenic massive sulfide deposit, Iran. Journal of Geochemical Exploration 168, pp.137-149.
  • Hajsadeghi, S., Mirmohammadi, M., Asghari, O., Meshkani, S.A. 2017. Geology and mineralization at the copper-rich volcanogenic massive sulfide deposit in Nohkouhi, Posht-e-Badam block, Central Iran. Ore Geology Review doi:https://doi. org/10.1016/j.oregeorev.2017.11.030.
  • Hassanpour, S., Afzal, P. 2013. Application of concentration– number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences 6(3), pp.957-970.
  • Journel, A.G. 1983. Nonparametric estimation of spatial distributions. Journal of the International Association for Mathematical Geology 15(3), pp.445-468.
  • Journel, A.G., Isaaks, E.H. 1984. Conditional indicator simulation: Application to a Sachatchewan uranium deposits. Marhematical Geology 16 (7):685-718.
  • Karmania, A. 2013.Company, Preliminary Exploration Report in Nohkouhi Area, Tehran (73 pp., (In Persian)).
  • Li, C., Ma, T., Shi, J. 2003. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration 77(2), pp.167-175.
  • Lin, X., Zhang, B., Wang, X. 2014. Application of factor analysis and concentration-volume fractal modeling to delineation of 3D geochemical patterns: a case study of the Jinwozi gold field, NW China. Geochemistry: Exploration, Environment, Analysis 14(4), pp.359-367.
  • Mandelbrot, B.B. 1983. The fractal geometry of nature (Vol. 173). Macmillan.
  • Rahmati, A., Afzal, P., Abrishamifar, S.A., Sadeghi, B. 2015. Application of concentration–number and concentration–volume fractal models to delineate mineralized zones in the Sheytoor iron deposit, Central Iran. Arabian Journal of Geosciences 8(5), pp.2953-2965.
  • Rezaei, S., Lotfi, M., Afzal, P., Jafari, M.R., Meigoony, M.S. 2015. Delineation of Cu prospects utilizing multifractal modeling and stepwise factor analysis in Noubaran 1: 100,000 sheet, Center of Iran. Arabian Journal of Geosciences 8(9), pp.7343- 7357.
  • Rossi, M.E., Deutsch, C.V. 2013. Mineral resource estimation. Springer Science & Business Media.
  • Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A.B., Saein, L.D. 2012. Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration 122, pp.9-19.
  • Sadeghi, B., Madani, N., Carranza, E.J.M. 2015. Combination of geostatistical simulation and fractal modeling for mineral resource classification. Journal of Geochemical Exploration 149, pp.59-73.
  • Sahandi, M. R., Soheily, M., Sadeghi, M., Delavar, S.T., Jafari Rad, A. 2002. Geological Map of Iran, 1:1,000,000. Geological Survey of Iran, Tehran, Unpublished
  • Soltani, F., Afzal, P., Asghari, O. 2014. Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran. Journal of Geochemical Exploration 140, pp.64-76.
  • Sun, T., Liu, L. 2014. Delineating the complexity of Cu– Mo mineralization in a porphyry intrusion by computational and fractal modeling: A case study of the Chehugou deposit in the Chifeng district, Inner Mongolia, China. Journal of Geochemical Exploration 144, pp.128-143.
  • Yasrebi, A.B., Afzal, P., Wetherelt, A., Foster, P., Esfahanipour, R. 2013. Correlation between geology and concentration-volume fractal models: significance for Cu and Mo mineralized zones separation in the Kahang porphyry deposit (Central Iran). Geologica Carpathica 64(2), pp.153-163.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Saeid Hajsadeghı This is me 0000-0003-3344-1665

Omid Asgharı This is me 0000-0002-3587-0220

Mirsaleh Mırmohammadı This is me 0000-0003-1681-4271

Peyman Afzal This is me 0000-0002-9413-0740

Seyed Ahmad Meshkanı This is me 0000-0001-5126-6472

Publication Date April 15, 2020
Published in Issue Year 2020 Volume: 161 Issue: 161

Cite

APA Hajsadeghı, S., Asgharı, O., Mırmohammadı, M., Afzal, P., et al. (2020). Uncertainty-volume fractal model for delineating copper mineralization controllers using geostatistical simulation in Nohkouhi volcanogenic massive sulfide deposit, Central Iran. Bulletin of the Mineral Research and Exploration, 161(161), 1-11. https://doi.org/10.19111/bulletinofmre.495753
AMA Hajsadeghı S, Asgharı O, Mırmohammadı M, Afzal P, Meshkanı SA. Uncertainty-volume fractal model for delineating copper mineralization controllers using geostatistical simulation in Nohkouhi volcanogenic massive sulfide deposit, Central Iran. Bull.Min.Res.Exp. April 2020;161(161):1-11. doi:10.19111/bulletinofmre.495753
Chicago Hajsadeghı, Saeid, Omid Asgharı, Mirsaleh Mırmohammadı, Peyman Afzal, and Seyed Ahmad Meshkanı. “Uncertainty-Volume Fractal Model for Delineating Copper Mineralization Controllers Using Geostatistical Simulation in Nohkouhi Volcanogenic Massive Sulfide Deposit, Central Iran”. Bulletin of the Mineral Research and Exploration 161, no. 161 (April 2020): 1-11. https://doi.org/10.19111/bulletinofmre.495753.
EndNote Hajsadeghı S, Asgharı O, Mırmohammadı M, Afzal P, Meshkanı SA (April 1, 2020) Uncertainty-volume fractal model for delineating copper mineralization controllers using geostatistical simulation in Nohkouhi volcanogenic massive sulfide deposit, Central Iran. Bulletin of the Mineral Research and Exploration 161 161 1–11.
IEEE S. Hajsadeghı, O. Asgharı, M. Mırmohammadı, P. Afzal, and S. A. Meshkanı, “Uncertainty-volume fractal model for delineating copper mineralization controllers using geostatistical simulation in Nohkouhi volcanogenic massive sulfide deposit, Central Iran”, Bull.Min.Res.Exp., vol. 161, no. 161, pp. 1–11, 2020, doi: 10.19111/bulletinofmre.495753.
ISNAD Hajsadeghı, Saeid et al. “Uncertainty-Volume Fractal Model for Delineating Copper Mineralization Controllers Using Geostatistical Simulation in Nohkouhi Volcanogenic Massive Sulfide Deposit, Central Iran”. Bulletin of the Mineral Research and Exploration 161/161 (April 2020), 1-11. https://doi.org/10.19111/bulletinofmre.495753.
JAMA Hajsadeghı S, Asgharı O, Mırmohammadı M, Afzal P, Meshkanı SA. Uncertainty-volume fractal model for delineating copper mineralization controllers using geostatistical simulation in Nohkouhi volcanogenic massive sulfide deposit, Central Iran. Bull.Min.Res.Exp. 2020;161:1–11.
MLA Hajsadeghı, Saeid et al. “Uncertainty-Volume Fractal Model for Delineating Copper Mineralization Controllers Using Geostatistical Simulation in Nohkouhi Volcanogenic Massive Sulfide Deposit, Central Iran”. Bulletin of the Mineral Research and Exploration, vol. 161, no. 161, 2020, pp. 1-11, doi:10.19111/bulletinofmre.495753.
Vancouver Hajsadeghı S, Asgharı O, Mırmohammadı M, Afzal P, Meshkanı SA. Uncertainty-volume fractal model for delineating copper mineralization controllers using geostatistical simulation in Nohkouhi volcanogenic massive sulfide deposit, Central Iran. Bull.Min.Res.Exp. 2020;161(161):1-11.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en