Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 175 Sayı: 175, 111 - 124, 05.12.2024
https://doi.org/10.19111/bulletinofmre.1472974

Öz

Proje Numarası

YYÜ, BAP, Project no: FYL-2017-5871

Kaynakça

  • Aref, M., Attia, O., Wali, A. 1997. Facies and depositional environment of the Holocene evaporites in the Ras Shukeir area, gulf of Suez, Egypt. Sedimentary Geology 110, 123–145.
  • Averty, K. B., Paytan, A. 2003. Empirical partition coefficients for Sr and Ca in marine barite, implications for reconstructing seawater Sr and Ca concentrations. Geochemistry Geophysics Geosystems 4, 1–14.
  • Babel, M. 1991. Dissolution of halite within the Middle Miocene (Badenian) laminated gypsum of southern Poland. Acta Geologica Polonica 41, 165–182.
  • Babel, M. 2004. Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geologica Polonica 542, 219–249.
  • Bell, C. M., Suarez, M. 1993. The depositional environments and tectonic development of a Mesozoic intra- arc basin, Atacama Region, Chile. Geologica Magazine 130, 395–417.
  • Calvert, S. E., Pedersen, T. F. 1996. Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales. Economic Geology 91, 36–47.
  • Casas, E., Lowenstein, T. 1989. Diagenesis of saline pan halite, comparison of petrographic features of modern, Quaternary and Permian halites. Journal of Sedimentary Petrology 59, 724–739.
  • Chaudhri, A. R., Singh, M. 2012. Clay minerals as climate change indicators, A case study. American Journal of Climate Change 1, 231–239.
  • Chen, P., Zeng, Q., Wang, Y., Zhou, T., Yu, B., Chen, J. 2018. Petrogenesis of the Dasuji porphyry Mo deposit at the northern margin of North China Craton, Constrains from geochronology, geochemistry and isotopes characteristics. Lithos 322, 87–103.
  • Cody, A. M., Cody, R. D. 1989. Evidence for micro- biological induction of {101} montmartre twinning of gypsum (CaSO4.2H2O). Journal of Crystal Growth 98, 721–730.
  • Corentin, P., Deconinck, J. F., Pellenard, P., Amédro, F., Bruneau, L., Chenot, E., Matrion, B., Huret, E., Landrein, P. 2019. Environmental and climatic controls of the clay mineralogy of Albian deposits in 2 the Paris and Vocontian basins (France). Cretaceous Research 108, 104342.
  • Deepthy, R., Balakrishnan, S. 2005. Climatic control on clay mineral formation, Evidence from weathering profiles developed on either side of the Western Ghats. Journal of Earth System Science 114, 545–556.
  • Ercan, H. Ü., Karakaya, M. Ç., Bozdağ, A., Karakaya, N., Delikan, A. 2017. Origin and evolution of halite based on stable isotopes (δ37Cl, δ81Br, δ11B and δ7Li) and trace elements in Tuz Gölü Basin, Turkey. Applied Geochemistry 105, 17–30.
  • Folkoff, M. E., Meentemeyer, V. 1987. Climatic control of the geography of clay minerals genesis. Annals of the Association of American Geographers 77, 635–650.
  • Forjanes, P., Astilleros, J.M. and Fernández-Díaz, L. 2020. The formation of barite and celestite through the replacement of gypsum. Minerals 10, 173–189.
  • Foth, H. D., Truck, L. M. 1973. Fundamentals of Soil Science. Wiley, 454.
  • Gaillardet, J., Viers, J., Dupre, B. 2014. Trace Elements in river water. Treatise on Geochemistry 5, 25–272.
  • Görgey, R. 1912. Zur Kenntnis der Kalisalzlager von Wittelsheim im Ober-Elsa. Tschermaks mineralogische und petrographische Mitteilungen 31, 339–468.
  • Guo, P., Chiyang, L., Peng, W., Ke, W., Haili, Y., Bei, Li. 2019. Geochemical behavior of rare elements in Paleogene saline lake sediments of the Qaidam Basin, NE Tibetan Plateau. Carbonates Evaporates 34, 359–372.
  • Gündogan, İ., Helvacı, C. 2001. Sedimentological and petrographical aspects of Upper Miocene evaporites in the Beypazarı and Çankırı-Çorum Basins, Central Anatolia, Turkey. International Geology Review 43, 818–829.
  • Haug, G. H., Gunther, D., Peterson, L. C., Sigman, D. M., Highen, K. A., Aeschlimann, B. 2003. Climate and the collapse of Maya Civilization. Science 299, 1731–1735.
  • Havur, E. 1968. Kötek-Kağızman (Kars) çevresinin 1/25.000 ölçekli detay petrol etüdü raporu. Maden Tetkik ve Arama Genel Müdürlüğü, Rapor No: 4271, Ankara (unpublished).
  • Holbourn, A. E., Kuhnt, W., Schulz, M., Erlenkeuser, H. 2005. Impacts of orbital forcing and atmospheric CO2 on Miocene ice-sheet expansion, Nature 438, 483–487.
  • Holdoway, K. A. 1978. Deposition of evaporites and red beds of the Nippewalla Group, Permian, Western Kansas. Kansas Geological Survey, 43.
  • Hovorka, S. D. 1992. Halite pseudomorphs after gypsum in bedded anhydrite – clue to gypsum-anhydrite relationships. Journal of Sedimentary Petrology 62, 1098–111.
  • Ingles, M., Anadon, P. 1991. Relationship of clay minerals to depositional environment in the non- marine Eocene Pontils Group, SE Ebro Basin (Spain). Journal of Sedimentary Research, 61(6), 926-939.
  • Ivanov, D., Utescher, T., Mosbrugger, V., Syabryaj, S., Djordjević-Milutinović, D., Molchanoff, S. 2011. Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology 304, 262–275.
  • Jackson, M. L. 1964. Chemical composition of soils. Bear,F. E. (Ed.). Chemistry of the soil. Reinhold Publishing Corporation. New York, 71–141.
  • Jones, C. L. 1965. Petrography of, evaporites from the Wellington Formation near Hutchinson, Kansas. United States Geology Survey Bulletin 1201, 1–70.
  • Jrbashyan, R., Chlingaryan, G., Kagramanov, Y., Karapetyan, A., Satian, M., Sayadyan, Y., Mkrtchyan, H. 2001. Geology of Meso-Cenozoic basins in Central Armenia, with comment on indications of hydrocarbons. Search and discovery article #30007.
  • Kayseri-Özer, M. S. 2013. Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodinamica Acta 26, 122–157.
  • Lear, C. H., Mawbey, E. M., Rosenthal, Y. 2010. Cenozoic benthic foraminiferal Mg/Ca and Li/Ca records, Toward unlocking temperatures and saturation states. Paleoceanography 25, PA4215.
  • Leitner, C., Neubauer, F., Marschallinger, R., Genser, J., Bernroider, M. 2013. Origin of deformed halite hopper crystals, pseudomorphic anhydrite cubes and polyhalite in Alpine evaporites (Austria, Germany). International Journal of Earth Sciences 102, 813–829.
  • Logan, B. W. 1987. The MacLeod evaporite basin, Western Australia: Holocene Environments, Sediments and Geologic Evolution. American Association of Petroleum Geologists Memoir, 140.
  • Lowenstein, T. K. 1982, Primary features in a potash evaporite deposit, the Permian Salado Formation of West Texas and New Mexico. In: Handford, C.R., Loucks, R.G., and Davies, G.R. (eds.), Depositional and diagenetic spectra of evaporites-a core workshop. Society for Sedimentary Geology, Calgary, Canada, p. 276–304.
  • Lowenstein, T. K. 1983. Deposition and alteration of an ancient potash evaporite, the Permian Salado Formation of New Mexico and West Texas. PhD. Thesis, The Johns Hopkins University, 411, Baltimore, Maryland.
  • Magee, J. W. 1991. Late Quaternary lacustrine, groundwater, aeolian and pedogenic gypsum in the Prungle Lakes, southeastern Australia. The Journal of Geology 73, 603–618.
  • Metais, G., Şen, S., Sözeri, K., Peigné, S., Varol, B. 2015. Late Paleogene terrestrial fauna and paleoenvironments in Eastern Anatolia, new insights from the Kağızman-Tuzluca Basin. Journal of Asian Earth Sciences 107, 96–109.
  • Methner, K., Campani, M., Fiebig, J., Löfer, N., Kempf, O., Mulch, A. 2020. Middle Miocene long-term continental temperature change in and out of pace with marine climate records. Scientific Reports 10, 7989.
  • Norrish, K., Chappel, B. W. 1977. X-ray fluorescence spectrometry. Physical Methods in Determinative Mineralogy. Zussman, J. (Ed). Clay Mineralogy. Academic Press. Cambridge, 201–272.
  • Oren, A. 2009. Microbial diversity and microbial abundance in saltsaturated brines: Why are the waters of hypersaline lakes red? Environment and Natural Resources Journal 15, 247–55. Pal, D. K., Deshpande, S. B., Venugopal, K. R., Kalbande,A. R. 1989. Formation of di- and trioctahedral smectite as an evidence for paleoclimatic changes in southern and central Peninsular India. Geoderma 45, 175–184.
  • Papworth, T., Aghabalyan, A. 2002. Armenia’s prospects 1, Armenia void of production but not without prospects. Oil and Gas Journal 100, 36–39.
  • Patteson, J. H, Ramsden, A. R., Dale, L. S., Fardy, J. J. 1986. Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chemical Geology 55, 1–16.
  • Potter, P. E., Szatmari, P. 2009. Global Miocene tectonics and the modern world. Earth Science Reviews 96, 279–295.
  • Pye, K., Krinsley, D. H. 1986. Diagenetic carbonate and evaporite minerals in Rotliegend aeolian sandstones of the southern North Sea: Their nature and relationship to secondary porosity. Clay Minerals 21, 443–457.
  • Rahimpour-Bonab, I. H., Alijani, N. 2003. Petrography, diagenesıs and depositional model for potash deposits of north Central Iran, and use of bromine geochemistry as a prospecting tool. Carbonates and Evaporites 18, 19–28.
  • Rosen, M. R. 1994. The importance of groundwater in playas, A review of playa classifications and the sedimentology and hydrology of playas. Geological Society of America Special Papers 289, 1–18.
  • Rögl, F. 1999. Mediterranean and paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short review). Geologica Carpathica 50, 339–349.
  • Schaller, W. T., Henderson, E. P. 1932. Mineralogy of drill cores from the potash field of New Mexico and Texas. U.S. Geological Survey Bulletin 833, 1–124.
  • Scheffler, K., Buehmann, D., Schwark, L. 2006. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies-response to climate evolution and sedimentary environment. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 184–203.
  • Scholle, P. A., Ulmer, D. S., Melim, L. A. 1992. Late-stage calcites in the Permian Capitan Formation and its equivalents, Delaware Basin margin, west Texas and New Mexico, evidence for replacement of precursor evaporates. Sedimentology 39, 207– 234.
  • Schreiber, B. C., Walker, D. 1992. Halite pseudomorphs after gypsum, a suggested mechanism. Journal of Sedimentary Petrology 62, 61–70. Schreiber, B. C., Freidman, G. M., Decima, A., Schreiber,E. 1976. Depositional environments of Upper Miocene (Messinian) evaporite deposites of the Silician Basin. Sedimentology 23, 729–760.
  • Shearman, D. J. 1970. Recent halite rock, Baja California, Mexico. Transactions of the Institution of Mining and Metallurgy 79, 155–162.
  • Shevenell, A. E., Kennett, J. P., Lea, D. W. 2008. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling, A Southern Ocean perspective. Geochemistry Geophysics Geosystems 9 (2), Q02006.
  • Singer, A., Navrot, J. 1977. Clay formation from basic volcanic rocks in a humid Mediterranean climate. Soil Science Society of America Journal 41, 645– 650.
  • Spencer, R. J., Lowenstein, T. K. 1989. Evaporites. Mcllreath, I. A., Morrow, D. W. (Eds.). Diagenesis II. Geoscience Canada. Reprint Series. Canada, 141–164.
  • Stewart, F. H. 1949. The petrology of the evaporites of the Eskdale No. 2 boring, east Yorkshire. Part I. The lower evaporite bed. Mineralogical Magazine 28, 621–675.
  • Şen, S., Antoine, P. O., Varol, B., Ayyıldız, T., Sözeri, K. 2011. Giant rhinoceros Paraceratherium and other vertebrates from Oligocene and Middle Miocene deposits of the Kağızman-Tuzluca Basin Eastern Turkey. Naturwissenschaften 98, 407–423.
  • Şenalp, M. 1969. 1/25000 scaled detailed petroleum exploration report of the Tuzluca (Kars) basin. Maden Tetkik ve Arama Genel Müdürlüğü, Rapor No: 4084, Ankara (unpublished).
  • Varol, B., Şen, Ş., Ayyıldız, T., Sözeri, K., Karakaş, Z., Metais, G. 2016. Sedimentology and stratigraphy of Cenozoic deposits in the Kağızman–Tuzluca Basin, northeastern Turkey. International Journal of Earth Sciences 105, 107–137.
  • Yurdagül, M. 1971. Kağızman doğusunun (Kars H50-c1 paftası) jeolojisi ve petrol olanakları. Maden Tetkik ve Arama Genel Müdürlüğü, Rapor No: 4828, Ankara (unpublished).
  • Warren, J. K., Kendall, C. G. St. C. 1985. Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings: Modem and ancient. American Association of Petroleum Geologists Bulletin 69, 1013–1023.
  • Weaver, C. E. 1989. Clays, Muds and Shales. Elsevier, 818.

Post-halite gypsum pseudomorphs with evidence of challenging climatic conditions and diagenetic replacement: a study from the southwest of Kağızman Basin (Eastern Anatolia, Türkiye)

Yıl 2024, Cilt: 175 Sayı: 175, 111 - 124, 05.12.2024
https://doi.org/10.19111/bulletinofmre.1472974

Öz

The study area is about the evaporitic-dominated Middle Miocene sequence situated in the southwest of the Kağızman Basin in Eastern Anatolia. The aim of this study is to investigate the
formation conditions and diagenetic development of pseudomorph gypsum formed after halite. Pseudomorph gypsum formations are intriguing geological features found in terrestrial deposits.
These formations are replaced by primary halite crystals during the very early phases of diagenesis, giving the appearance of halite crystals but being composed of gypsum. The development of these pseudomorphs is indicative of specific paleoenvironmental conditions. The fact that these gypsum pseudomorphs are found in shallow depths of the lake and are well-preserved, smooth-surfaced, and varying in size suggests that they were the result of intense evaporation and rapid fluctuations in the water and pH level. This evaporation likely led to a decrease in the lake level and changes in the concentration of saltwater over time. The correlation coefficient relationships and element concentration values of these gypsums show that these elements are both continental in origin and subject to microbial influence. These pseudomorph gypsum and the clastic materials (transported by fluvial activity) that were interbedded gave important insights into the hot, long-drought, and lowhumidity climate of the era and adapted to the Middle Miocene global warming conditions.

Etik Beyan

This study was made possible with the support of The Scientific Research Project Council of Van Yüzüncü Yıl University (YYÜ, BAP, Project no: FYL-2017-5871).

Destekleyen Kurum

This study was made possible with the support of The Scientific Research Project Council of Van Yüzüncü Yıl University (YYÜ, BAP, Project no: FYL-2017-5871).

Proje Numarası

YYÜ, BAP, Project no: FYL-2017-5871

Kaynakça

  • Aref, M., Attia, O., Wali, A. 1997. Facies and depositional environment of the Holocene evaporites in the Ras Shukeir area, gulf of Suez, Egypt. Sedimentary Geology 110, 123–145.
  • Averty, K. B., Paytan, A. 2003. Empirical partition coefficients for Sr and Ca in marine barite, implications for reconstructing seawater Sr and Ca concentrations. Geochemistry Geophysics Geosystems 4, 1–14.
  • Babel, M. 1991. Dissolution of halite within the Middle Miocene (Badenian) laminated gypsum of southern Poland. Acta Geologica Polonica 41, 165–182.
  • Babel, M. 2004. Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geologica Polonica 542, 219–249.
  • Bell, C. M., Suarez, M. 1993. The depositional environments and tectonic development of a Mesozoic intra- arc basin, Atacama Region, Chile. Geologica Magazine 130, 395–417.
  • Calvert, S. E., Pedersen, T. F. 1996. Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales. Economic Geology 91, 36–47.
  • Casas, E., Lowenstein, T. 1989. Diagenesis of saline pan halite, comparison of petrographic features of modern, Quaternary and Permian halites. Journal of Sedimentary Petrology 59, 724–739.
  • Chaudhri, A. R., Singh, M. 2012. Clay minerals as climate change indicators, A case study. American Journal of Climate Change 1, 231–239.
  • Chen, P., Zeng, Q., Wang, Y., Zhou, T., Yu, B., Chen, J. 2018. Petrogenesis of the Dasuji porphyry Mo deposit at the northern margin of North China Craton, Constrains from geochronology, geochemistry and isotopes characteristics. Lithos 322, 87–103.
  • Cody, A. M., Cody, R. D. 1989. Evidence for micro- biological induction of {101} montmartre twinning of gypsum (CaSO4.2H2O). Journal of Crystal Growth 98, 721–730.
  • Corentin, P., Deconinck, J. F., Pellenard, P., Amédro, F., Bruneau, L., Chenot, E., Matrion, B., Huret, E., Landrein, P. 2019. Environmental and climatic controls of the clay mineralogy of Albian deposits in 2 the Paris and Vocontian basins (France). Cretaceous Research 108, 104342.
  • Deepthy, R., Balakrishnan, S. 2005. Climatic control on clay mineral formation, Evidence from weathering profiles developed on either side of the Western Ghats. Journal of Earth System Science 114, 545–556.
  • Ercan, H. Ü., Karakaya, M. Ç., Bozdağ, A., Karakaya, N., Delikan, A. 2017. Origin and evolution of halite based on stable isotopes (δ37Cl, δ81Br, δ11B and δ7Li) and trace elements in Tuz Gölü Basin, Turkey. Applied Geochemistry 105, 17–30.
  • Folkoff, M. E., Meentemeyer, V. 1987. Climatic control of the geography of clay minerals genesis. Annals of the Association of American Geographers 77, 635–650.
  • Forjanes, P., Astilleros, J.M. and Fernández-Díaz, L. 2020. The formation of barite and celestite through the replacement of gypsum. Minerals 10, 173–189.
  • Foth, H. D., Truck, L. M. 1973. Fundamentals of Soil Science. Wiley, 454.
  • Gaillardet, J., Viers, J., Dupre, B. 2014. Trace Elements in river water. Treatise on Geochemistry 5, 25–272.
  • Görgey, R. 1912. Zur Kenntnis der Kalisalzlager von Wittelsheim im Ober-Elsa. Tschermaks mineralogische und petrographische Mitteilungen 31, 339–468.
  • Guo, P., Chiyang, L., Peng, W., Ke, W., Haili, Y., Bei, Li. 2019. Geochemical behavior of rare elements in Paleogene saline lake sediments of the Qaidam Basin, NE Tibetan Plateau. Carbonates Evaporates 34, 359–372.
  • Gündogan, İ., Helvacı, C. 2001. Sedimentological and petrographical aspects of Upper Miocene evaporites in the Beypazarı and Çankırı-Çorum Basins, Central Anatolia, Turkey. International Geology Review 43, 818–829.
  • Haug, G. H., Gunther, D., Peterson, L. C., Sigman, D. M., Highen, K. A., Aeschlimann, B. 2003. Climate and the collapse of Maya Civilization. Science 299, 1731–1735.
  • Havur, E. 1968. Kötek-Kağızman (Kars) çevresinin 1/25.000 ölçekli detay petrol etüdü raporu. Maden Tetkik ve Arama Genel Müdürlüğü, Rapor No: 4271, Ankara (unpublished).
  • Holbourn, A. E., Kuhnt, W., Schulz, M., Erlenkeuser, H. 2005. Impacts of orbital forcing and atmospheric CO2 on Miocene ice-sheet expansion, Nature 438, 483–487.
  • Holdoway, K. A. 1978. Deposition of evaporites and red beds of the Nippewalla Group, Permian, Western Kansas. Kansas Geological Survey, 43.
  • Hovorka, S. D. 1992. Halite pseudomorphs after gypsum in bedded anhydrite – clue to gypsum-anhydrite relationships. Journal of Sedimentary Petrology 62, 1098–111.
  • Ingles, M., Anadon, P. 1991. Relationship of clay minerals to depositional environment in the non- marine Eocene Pontils Group, SE Ebro Basin (Spain). Journal of Sedimentary Research, 61(6), 926-939.
  • Ivanov, D., Utescher, T., Mosbrugger, V., Syabryaj, S., Djordjević-Milutinović, D., Molchanoff, S. 2011. Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology 304, 262–275.
  • Jackson, M. L. 1964. Chemical composition of soils. Bear,F. E. (Ed.). Chemistry of the soil. Reinhold Publishing Corporation. New York, 71–141.
  • Jones, C. L. 1965. Petrography of, evaporites from the Wellington Formation near Hutchinson, Kansas. United States Geology Survey Bulletin 1201, 1–70.
  • Jrbashyan, R., Chlingaryan, G., Kagramanov, Y., Karapetyan, A., Satian, M., Sayadyan, Y., Mkrtchyan, H. 2001. Geology of Meso-Cenozoic basins in Central Armenia, with comment on indications of hydrocarbons. Search and discovery article #30007.
  • Kayseri-Özer, M. S. 2013. Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodinamica Acta 26, 122–157.
  • Lear, C. H., Mawbey, E. M., Rosenthal, Y. 2010. Cenozoic benthic foraminiferal Mg/Ca and Li/Ca records, Toward unlocking temperatures and saturation states. Paleoceanography 25, PA4215.
  • Leitner, C., Neubauer, F., Marschallinger, R., Genser, J., Bernroider, M. 2013. Origin of deformed halite hopper crystals, pseudomorphic anhydrite cubes and polyhalite in Alpine evaporites (Austria, Germany). International Journal of Earth Sciences 102, 813–829.
  • Logan, B. W. 1987. The MacLeod evaporite basin, Western Australia: Holocene Environments, Sediments and Geologic Evolution. American Association of Petroleum Geologists Memoir, 140.
  • Lowenstein, T. K. 1982, Primary features in a potash evaporite deposit, the Permian Salado Formation of West Texas and New Mexico. In: Handford, C.R., Loucks, R.G., and Davies, G.R. (eds.), Depositional and diagenetic spectra of evaporites-a core workshop. Society for Sedimentary Geology, Calgary, Canada, p. 276–304.
  • Lowenstein, T. K. 1983. Deposition and alteration of an ancient potash evaporite, the Permian Salado Formation of New Mexico and West Texas. PhD. Thesis, The Johns Hopkins University, 411, Baltimore, Maryland.
  • Magee, J. W. 1991. Late Quaternary lacustrine, groundwater, aeolian and pedogenic gypsum in the Prungle Lakes, southeastern Australia. The Journal of Geology 73, 603–618.
  • Metais, G., Şen, S., Sözeri, K., Peigné, S., Varol, B. 2015. Late Paleogene terrestrial fauna and paleoenvironments in Eastern Anatolia, new insights from the Kağızman-Tuzluca Basin. Journal of Asian Earth Sciences 107, 96–109.
  • Methner, K., Campani, M., Fiebig, J., Löfer, N., Kempf, O., Mulch, A. 2020. Middle Miocene long-term continental temperature change in and out of pace with marine climate records. Scientific Reports 10, 7989.
  • Norrish, K., Chappel, B. W. 1977. X-ray fluorescence spectrometry. Physical Methods in Determinative Mineralogy. Zussman, J. (Ed). Clay Mineralogy. Academic Press. Cambridge, 201–272.
  • Oren, A. 2009. Microbial diversity and microbial abundance in saltsaturated brines: Why are the waters of hypersaline lakes red? Environment and Natural Resources Journal 15, 247–55. Pal, D. K., Deshpande, S. B., Venugopal, K. R., Kalbande,A. R. 1989. Formation of di- and trioctahedral smectite as an evidence for paleoclimatic changes in southern and central Peninsular India. Geoderma 45, 175–184.
  • Papworth, T., Aghabalyan, A. 2002. Armenia’s prospects 1, Armenia void of production but not without prospects. Oil and Gas Journal 100, 36–39.
  • Patteson, J. H, Ramsden, A. R., Dale, L. S., Fardy, J. J. 1986. Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chemical Geology 55, 1–16.
  • Potter, P. E., Szatmari, P. 2009. Global Miocene tectonics and the modern world. Earth Science Reviews 96, 279–295.
  • Pye, K., Krinsley, D. H. 1986. Diagenetic carbonate and evaporite minerals in Rotliegend aeolian sandstones of the southern North Sea: Their nature and relationship to secondary porosity. Clay Minerals 21, 443–457.
  • Rahimpour-Bonab, I. H., Alijani, N. 2003. Petrography, diagenesıs and depositional model for potash deposits of north Central Iran, and use of bromine geochemistry as a prospecting tool. Carbonates and Evaporites 18, 19–28.
  • Rosen, M. R. 1994. The importance of groundwater in playas, A review of playa classifications and the sedimentology and hydrology of playas. Geological Society of America Special Papers 289, 1–18.
  • Rögl, F. 1999. Mediterranean and paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short review). Geologica Carpathica 50, 339–349.
  • Schaller, W. T., Henderson, E. P. 1932. Mineralogy of drill cores from the potash field of New Mexico and Texas. U.S. Geological Survey Bulletin 833, 1–124.
  • Scheffler, K., Buehmann, D., Schwark, L. 2006. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies-response to climate evolution and sedimentary environment. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 184–203.
  • Scholle, P. A., Ulmer, D. S., Melim, L. A. 1992. Late-stage calcites in the Permian Capitan Formation and its equivalents, Delaware Basin margin, west Texas and New Mexico, evidence for replacement of precursor evaporates. Sedimentology 39, 207– 234.
  • Schreiber, B. C., Walker, D. 1992. Halite pseudomorphs after gypsum, a suggested mechanism. Journal of Sedimentary Petrology 62, 61–70. Schreiber, B. C., Freidman, G. M., Decima, A., Schreiber,E. 1976. Depositional environments of Upper Miocene (Messinian) evaporite deposites of the Silician Basin. Sedimentology 23, 729–760.
  • Shearman, D. J. 1970. Recent halite rock, Baja California, Mexico. Transactions of the Institution of Mining and Metallurgy 79, 155–162.
  • Shevenell, A. E., Kennett, J. P., Lea, D. W. 2008. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling, A Southern Ocean perspective. Geochemistry Geophysics Geosystems 9 (2), Q02006.
  • Singer, A., Navrot, J. 1977. Clay formation from basic volcanic rocks in a humid Mediterranean climate. Soil Science Society of America Journal 41, 645– 650.
  • Spencer, R. J., Lowenstein, T. K. 1989. Evaporites. Mcllreath, I. A., Morrow, D. W. (Eds.). Diagenesis II. Geoscience Canada. Reprint Series. Canada, 141–164.
  • Stewart, F. H. 1949. The petrology of the evaporites of the Eskdale No. 2 boring, east Yorkshire. Part I. The lower evaporite bed. Mineralogical Magazine 28, 621–675.
  • Şen, S., Antoine, P. O., Varol, B., Ayyıldız, T., Sözeri, K. 2011. Giant rhinoceros Paraceratherium and other vertebrates from Oligocene and Middle Miocene deposits of the Kağızman-Tuzluca Basin Eastern Turkey. Naturwissenschaften 98, 407–423.
  • Şenalp, M. 1969. 1/25000 scaled detailed petroleum exploration report of the Tuzluca (Kars) basin. Maden Tetkik ve Arama Genel Müdürlüğü, Rapor No: 4084, Ankara (unpublished).
  • Varol, B., Şen, Ş., Ayyıldız, T., Sözeri, K., Karakaş, Z., Metais, G. 2016. Sedimentology and stratigraphy of Cenozoic deposits in the Kağızman–Tuzluca Basin, northeastern Turkey. International Journal of Earth Sciences 105, 107–137.
  • Yurdagül, M. 1971. Kağızman doğusunun (Kars H50-c1 paftası) jeolojisi ve petrol olanakları. Maden Tetkik ve Arama Genel Müdürlüğü, Rapor No: 4828, Ankara (unpublished).
  • Warren, J. K., Kendall, C. G. St. C. 1985. Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings: Modem and ancient. American Association of Petroleum Geologists Bulletin 69, 1013–1023.
  • Weaver, C. E. 1989. Clays, Muds and Shales. Elsevier, 818.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Pelin Güngör Yeşilova 0000-0002-0748-6192

Proje Numarası YYÜ, BAP, Project no: FYL-2017-5871
Yayımlanma Tarihi 5 Aralık 2024
Gönderilme Tarihi 22 Ocak 2024
Kabul Tarihi 7 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 175 Sayı: 175

Kaynak Göster

APA Güngör Yeşilova, P. (2024). Post-halite gypsum pseudomorphs with evidence of challenging climatic conditions and diagenetic replacement: a study from the southwest of Kağızman Basin (Eastern Anatolia, Türkiye). Bulletin of the Mineral Research and Exploration, 175(175), 111-124. https://doi.org/10.19111/bulletinofmre.1472974
AMA Güngör Yeşilova P. Post-halite gypsum pseudomorphs with evidence of challenging climatic conditions and diagenetic replacement: a study from the southwest of Kağızman Basin (Eastern Anatolia, Türkiye). Bull.Min.Res.Exp. Aralık 2024;175(175):111-124. doi:10.19111/bulletinofmre.1472974
Chicago Güngör Yeşilova, Pelin. “Post-Halite Gypsum Pseudomorphs With Evidence of Challenging Climatic Conditions and Diagenetic Replacement: A Study from the Southwest of Kağızman Basin (Eastern Anatolia, Türkiye)”. Bulletin of the Mineral Research and Exploration 175, sy. 175 (Aralık 2024): 111-24. https://doi.org/10.19111/bulletinofmre.1472974.
EndNote Güngör Yeşilova P (01 Aralık 2024) Post-halite gypsum pseudomorphs with evidence of challenging climatic conditions and diagenetic replacement: a study from the southwest of Kağızman Basin (Eastern Anatolia, Türkiye). Bulletin of the Mineral Research and Exploration 175 175 111–124.
IEEE P. Güngör Yeşilova, “Post-halite gypsum pseudomorphs with evidence of challenging climatic conditions and diagenetic replacement: a study from the southwest of Kağızman Basin (Eastern Anatolia, Türkiye)”, Bull.Min.Res.Exp., c. 175, sy. 175, ss. 111–124, 2024, doi: 10.19111/bulletinofmre.1472974.
ISNAD Güngör Yeşilova, Pelin. “Post-Halite Gypsum Pseudomorphs With Evidence of Challenging Climatic Conditions and Diagenetic Replacement: A Study from the Southwest of Kağızman Basin (Eastern Anatolia, Türkiye)”. Bulletin of the Mineral Research and Exploration 175/175 (Aralık 2024), 111-124. https://doi.org/10.19111/bulletinofmre.1472974.
JAMA Güngör Yeşilova P. Post-halite gypsum pseudomorphs with evidence of challenging climatic conditions and diagenetic replacement: a study from the southwest of Kağızman Basin (Eastern Anatolia, Türkiye). Bull.Min.Res.Exp. 2024;175:111–124.
MLA Güngör Yeşilova, Pelin. “Post-Halite Gypsum Pseudomorphs With Evidence of Challenging Climatic Conditions and Diagenetic Replacement: A Study from the Southwest of Kağızman Basin (Eastern Anatolia, Türkiye)”. Bulletin of the Mineral Research and Exploration, c. 175, sy. 175, 2024, ss. 111-24, doi:10.19111/bulletinofmre.1472974.
Vancouver Güngör Yeşilova P. Post-halite gypsum pseudomorphs with evidence of challenging climatic conditions and diagenetic replacement: a study from the southwest of Kağızman Basin (Eastern Anatolia, Türkiye). Bull.Min.Res.Exp. 2024;175(175):111-24.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en