Satellite remote sensing (RS) enables the extraction of vital information on land cover and crop type. Land cover and crop type classification using RS data and machine learning (ML) techniques have recently gained considerable attention in the scientific community. This study aimed to enhance remote sensing research using high-resolution satellite imagery and a ML approach. To achieve this objective, ML algorithms were employed to demonstrate whether it was possible to accurately classify various crop types within agricultural areas using the Sentinel 2A-derived Normalized Difference Red Edge Index (NDRE). Five ML classifiers, namely Support Vector Machines (SVM), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), and Multi-Layer Perceptron (MLP), were implemented using Python programming on Google Colaboratory. The target land cover classes included cereals, fallow, forage, fruits, grassland-pasture, legumes, maize, sugar beet, onion-garlic, sunflower, and watermelon-melon. The classification models exhibited strong performance, evidenced by their robust overall accuracy (OA). The RF model outperformed, with an OA rate of 95% and a Kappa score of 92%. It was followed by DT (88%), KNN (87%), SVM (85%), and MLP (82%). These findings showed the possibility of achieving high classification accuracy using NDRE from a few Sentinel 2A images. This study demonstrated the potential enhancement of the application of high-resolution satellite RS data and ML for crop type classification in regions that have received less attention in previous studies.
Uzaktan algılama, arazi örtüsü ve bitki türleriyle ilgili kritik bilgilerin edinilmesini sağlayarak tarım alanındaki araştırmalara önemli katkılar sunmaktadır. Son zamanlarda, uzaktan algılama verileri ve makine öğrenimi algoritmaları aracılığıyla arazi örtüsü ve ürün türlerinin sınıflandırılması konusu büyük ilgi çekmektedir. Bu çalışmanın ana amacı, yüksek çözünürlüklü uydu görüntüleri ve makine öğrenimi yaklaşımını kullanarak uzaktan algılama araştırma alanını geliştirmektir. Bu hedefe ulaşmak adına, Sentinel 2A'dan elde edilen Normalleştirilmiş Fark Kırmızı Kenar İndeksi (NDRE) ile tarım alanlarındaki çeşitli ürün türlerinin etkili bir şekilde sınıflandırılmasının mümkün olup olmadığını değerlendirmek amacıyla çeşitli makine öğrenimi yöntemleri kullanılmıştır. Karar Ağaçları (KA), Destek Vektör Makineleri (DVM), Rastgele Orman (RO), K-En Yakın Komşular (KEYK) ve Çok Katmanlı Algılayıcı (ÇKA) dahil olmak üzere beş makine öğrenimi sınıflandırıcı algoritması uygulanmıştır. Analizde değerlendirilen hedef arazi örtüsü sınıfları arasında tahıllar, nadas, yem bitkileri, meyveler, çayır-mera, baklagiller, mısır, şeker pancarı, soğan-sarımsak, ayçiçeği ve karpuz-kavun bulunmaktadır. Elde edilen sınıflandırma modelleri, yüksek doğruluk oranları ile güçlü bir performans sergilemiştir. RF modeli %95'lik genel doğruluk (OA) oranı ve %92'lik Kappa skoru ile en yüksek performans göstermiştir. Bunu sırasıyla %88, %87, %85 ve %82 OA ile KA, KEYK, DVM ve ÇKA takip etmiştir. Bu bulgular, az sayıda Sentinel 2A görüntüsünden NDRE kullanılarak yüksek sınıflandırma doğruluğu elde edilebileceğini göstermektedir. Bu çalışma, yüksek mekânsal çözünürlüğe sahip uydu uzaktan algılama verileri ve makine öğrenimi algoritmalarının, mahsul türü sınıflandırması için potansiyel bir gelişim sağlayabileceğini doğrulamıştır.
Makale araştırma ve yayın etiğine uygun olarak hazırlanmıştır.
Primary Language | English |
---|---|
Subjects | Biosystem, Precision Agriculture Technologies |
Journal Section | Research Articles |
Authors | |
Early Pub Date | June 11, 2024 |
Publication Date | June 14, 2024 |
Submission Date | December 8, 2023 |
Acceptance Date | March 20, 2024 |
Published in Issue | Year 2024 |
TR Dizin kriterleri gereği dergimize gönderilecek olan makalelerin mutlaka aşağıda belirtilen hususlara uyması gerekmektedir.
Tüm bilim dallarında yapılan, ve etik kurul kararı gerektiren klinik ve deneysel insan ve hayvanlar üzerindeki çalışmalar için ayrı ayrı etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
Makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmelidir.
Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.
Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi.
Etik Kurul izni gerektiren araştırmalar aşağıdaki gibidir.
- Anket, mülakat, odak grup çalışması, gözlem, deney, görüşme teknikleri kullanılarak katılımcılardan veri toplanmasını gerektiren nitel ya da nicel yaklaşımlarla yürütülen her türlü araştırmalar
- İnsan ve hayvanların (materyal/veriler dahil) deneysel ya da diğer bilimsel amaçlarla kullanılması,
- İnsanlar üzerinde yapılan klinik araştırmalar,
- Hayvanlar üzerinde yapılan araştırmalar,
- Kişisel verilerin korunması kanunu gereğince retrospektif çalışmalar,
Ayrıca;
- Olgu sunumlarında “Aydınlatılmış onam formu”nun alındığının belirtilmesi,
- Başkalarına ait ölçek, anket, fotoğrafların kullanımı için sahiplerinden izin alınması ve belirtilmesi,
- Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine uyulduğunun belirtilmesi.
Makale başvurusunda;
(1) Tam metin makale, Dergi yazım kurallarına uygun olmalı, Makalenin ilk sayfasında ve teşekkür bilgi notu kısmında Araştırma ve Yayın Etiğine uyulduğuna ve Etik kurul izni gerektirmediğine dair ifadeye yer verilmelidir. Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmeli ve sisteme belgenin yüklenmesi gerekmektedir. (Dergiye gönderilen makalelerde; konu ile ilgili olarak derginin daha önceki sayılarında yayımlanan en az bir yayına atıf yapılması önem arz etmektedir. Dergiye yapılan atıflarda “Bursa Uludag Üniv. Ziraat Fak. Derg.” kısaltması kullanılmalıdır.)
(2) Tam metin makalenin taratıldığını gösteren benzerlik raporu (Ithenticate, intihal.net) (% 20’nin altında olmalıdır),
(3) İmzalanmış ve taratılmış başvuru formu, Dergi web sayfasında yer alan başvuru formunun başvuran tarafından İmzalanıp, taratılarak yüklenmesi , (Ön yazı yerine)
(4) Tüm yazarlar tarafından imzalanmış telif hakkı devir formunun taranmış kopyası,
(5) Araştırmacıların Katkı Oranı beyanı, Çıkar Çatışması beyanı verilmesi Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi ve sisteme belgenin (Tüm yazarlar tarafından imzalanmış bir yazı) yüklenmesi gerekmektedir.
Belgelerin elektronik formatta DergiPark sistemine https://dergipark.org.tr/tr/login adresinden kayıt olunarak başvuru sırasında yüklenmesi mümkündür.
Journal of Agricultural Faculty of Bursa Uludag University is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.