Research Article
BibTex RIS Cite

Fermentasyon ve Enzimatik Hidroliz Uygulanan Peynir Altı Sularının Bazı Biyoaktif Özellikleri

Year 2021, Volume: 35 Issue: 2, 277 - 297, 01.12.2021

Abstract

Bu çalışmada, peynir altı suyunun hem farklı tür probiyotik laktik asit bakterileri ile fermente edilerek, hem
de çeşitli bitkisel ham enzim ekstrakları (%4) ile hidroliz edilerek biyoaktif peptitler yönünden zenginleştirilmiş peynir altı suyunun üretilmesi amaçlanmıştır. Fermente ve hidroliz edilmiş peynir altı suyu örneklerinin fizikokimyasal, mikrobiyolojik ve bazı biyoaktif özellikleri araştırılmıştır. Araştırmada elde edilen bulgulara göre, ananas, kavun ve enginar kabuklarından elde edilen ham enzim ekstraktlarının proteolitik enzim aktiviteleri sırasıyla 5.066, 4.921 ve 5.514 UI/mL olarak belirlenmiştir. Fermente edilen peynir altı suyu örneklerinin anjiotensin dönüştürücü enzim inhibitör aktiviteleri 2.02-6.48 kat arasında artarken, hidrolize peynir altı suyu örneklerinde ise 1.85 ile 3.29 kat arasında artış göstermiştir. Bitkisel ham enzim ekstraktlarıyla hidroliz edilmiş peynir altı suyu örneklerinde %35 ile %53 arasında değişen antioksidan aktivite artışının meydana geldiği tespit edilmiştir. Elektroforetik analizler sonucunda; β-laktoglobulin ve α-laktalbumin’in fermentasyon ve hidroliz sonucunda parçalanmaları farklı düzeyde olduğu belirlenmiştir. Fermente edilen peynir altı suyu örneklerinde yapılan Lactobacillus acidophilus ve Lactobacillus rhamnosus sayımında sırasıyla 0.39 log kob/mL ve 1.09 log kob/mL düzeyinde bir artışın olduğu belirlenmiştir. Fermente ve hidroliz edilmiş peynir altı sularının Escherichia coli ATTC 25922, Staphylococcus aureus ATTC 6538, Listeria monocytogenes 4c RSKK 476 ve Salmonella enterica subsp. enterica serovar Typhimurium ATCC 700408 bakterileri üzerine herhangi bir mikrobiyel inhibisyon sağlamadığı da tespit edilmiştir.

Supporting Institution

-

Project Number

-

Thanks

Çalışmada hammadde olarak kullanılan PAS’ın ve bazı kimyasal maddelerin temininde yardımcı olan Uşak Süt A.Ş’ye teşekkür ederiz. Çalışmadaki kullanılan starter kültürlerin temin edilmesinde yarıdmcı olan CHR HANSEN (Türkiye) firmasına teşekkür ederiz. Antimikrobiyel etki çalışması için patojen kültürlerin temin edilmesinde yardımcı olan Doç.Dr. Sine ÖZMEN TOĞAY ve Doç. Dr. Abdullah DİKİCİ’ye teşekkür ederiz.

References

  • Abdel-Hamid, M., Otte, J., De Gobba, C., Osman, A. and Hamad, E. 2017. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. International Dairy Journal, 66: 91-98.
  • Aguilar-Toalá, J.E., Santiago-López, L., Peres, C.M., Peres, C., Garcia, H.S., Vallejo-Cordoba, B. and Hernández-Mendoza, A. 2017. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. Journal of Dairy Science, 100(1): 65-75.
  • Apak, R., Güçlü, K., Özyürek, M. and Karademir, S.E. 2004. A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: The CUPRAC method. Journal of Agricultural and Food Chemistry, 52:7970-7981.
  • Barros, R.M., Ferreira, C.A., Silva, S.V. and Malcata, F.X. 2001. Quantitative studies on the enzymatic hydrolysis of milk proteins brought about by cardosins precipitated by ammonium sulfate. Enzyme and Microbial Technology, 29(8-9): 541-547.
  • Benvenuti, S., Pellati F., Melegari, M., Bertelli, D., 2004. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of Food Science, 69: 164–169.
  • Blaschek, K. M., Wendorff, W. L. and Rankin, S. A. 2007. Survey of salty and sweet whey composition from various cheese plants in Wisconsin. Journal of Dairy Science, 90(4): 2029-2034.
  • Bradley, J.R.L, Arnold, J.E, Barbano, D.M, Semerad, R.G, Smith, D.E and Vines, B.K. 1992. Chemical and physical methods: Standard Methods for the Examination of Dairy Products, Ed .: Marshal R.T, American Public Health Association, Washington, DC, 433–531.
  • Büyüktuncel, E. 2013. Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler. Marmara Pharmaceutical Journal, 17: 93-103.
  • Brandelli, A., Daroit, D.J. and Correa, A.P.F. 2015. Whey as a source of peptides with remarkable biological activites. Food Research International, 73:149-161.
  • Chabance, B., Marteau P., Rambaud J.C., Migliore Samour, D., Boynard M., Perrotin P., Guillet R., Jollès, P. and Fait A.M. 1998. Casein peptide release and passage to the in humans during digestion of milk or yogurt. Biochimie, 80: 155-65.
  • Chaves-López, C., Serio, A., Paparella, A., Martuscelli, M., Corsetti, A., Tofalo, R. and Suzzi, G. 2014. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food microbiology, 42: 117-121.
  • Cherrat, L., Espina, L., Bakkali, M., Garcia-Gonzalo, D., Pagan, R. and Laglaoui, A. 2013. Chemical composition andantioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. Journal of the Science of Food and Agriculture, 94(6):1197-1204.
  • Correa, A.P.F, Daroit, D.J., Fontoura, R., Meira, S.M.M., Segalin, J. and Brandelli, A. 2014. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61: 48-55.
  • Cushman, D.W. and Cheung, H.S. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 7 (20): 1637-1648.
  • Dave, R.I. and Shah, N.P. 1996. Evaluation of Media for Selective Enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Bifidobacteria. Journal of Dairy Science, 79(9): 1529-1536.
  • Elbarbary, H.A., Ejima, A. and Sato, K. 2019. Generation of antibacterial peptides from crude cheese whey using pepsin and rennet enzymes at various pH conditions. Journal of the Science of Food and Agriculture, 99:555-563.
  • Esposito, M., Di Pierro, P., Dejonghe, W., Mariniello, L. and Porta, R. 2016. Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease. Food Chemistry, 204:115-121.
  • Guo, Y., Jiang, X., Xiong, B., Zhang, T., Zeng, X., Wu, Z., Sun, Y. and Pan, D. 2019. Production and transepithelial transportation of Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from whey protein hydrolyzed by immobilized Lactobacillus helveticus proteinase. Journal Dairy Science, 102:1–15.
  • Gür, F., Güzel, M., Öncül, N., Yıldırım, Z. ve Yıldırım, M. 2010. Süt serum proteinleri ve türevlerinin biyolojik ve fizyolojik aktiviteleri. Akademik Gıda, 8(1): 23-31.
  • Hamme, V., Sannier, F., Piot, J.M., Didelot, S. and Juchereau, S.B. 2009. Crude goat whey fermentation by Kluyveromyces marxianus and Lactobacillus rhamnosus: contribution to proteolysis and ACE inhibitory activity. Journal of Dairy Research, 76:152–157.
  • Hernández-Ledesma, B., Quirós, A., Amigo, L. and Recio, I. 2007. Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. International Dairy Journal, 17(1): 42-49.
  • Kailasapathy, K., Harmstorf, L. and Phillips, M. 2008. Survival of Lactobacillus acidophilus and Bifidobacterlum anamalis spp. lactics in stirred fruit yogurts. LWT Food Science and Technology, 41(7):1317-1322.
  • Kırca, A. ve Özkan, Ö. 2010. Değişik amaçlı bazı test ve analiz yöntemleri: Gıda analizleri, Ed.:Bekir Cemeroğlu, Gıda Teknolojisi Derneği Yayınları, Yayın No: 34, bizim Grup Basımevi, Ankara.
  • Konrad, B., Anna, D., Marek, S., Marta, P., Aleksandra, Z. and Jo´zefa, C. 2014. The evaluation of dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and angiotensin converting enzyme (ACE) Inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian pumpkin (Cucurbita ficifolia). International Journal of Peptide Research and Therapeutics, 20:483–491.
  • Korhonen, H. 2009. Milk-derived bioactive peptides: From science to applications Journal of Functional Foods, 1(2): 177-187.
  • Korhonen, H. and Pihlanto-Leppälä, A. 2000. Milk protein-derived bioactive peptides-novel opportunities for health promotion. Bulletin of IDF, 363: 17-26.
  • Korhonen, H. and Pihlanto-Leppälä, A. 2006. Bioactive peptides: production and functionality. International Dairy Journal. 16(9): 945-960.
  • Lacroix, I.M.E., Meng, G., Cheung, I.W.Y. and Li-Chan, E.C.Y. 2016. Do whey protein-derived peptides have dual dipeptidyl-peptidase IV and angiotensin I-converting enzyme inhibitory activities? Journal of Functional Foods, 21: 87–96.
  • Le Blanc, J. G., Matar, C., Valdez, J. C., LeBlanc, J. and Perdigon, G. 2002. Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. Journal of Dairy Science, 85(11): 2733-2742.
  • Ledesma, B.H., Davalos, A., Bartolome, B. and Amigo, L. 2005. Preparation of antioxidant enzymatic hydrolysates from alpha-Lactalbumin and beta-Lactoglobulin identification of active peptides by HPLCMS/MS. Journal of Agriculture and Food Chemistry, 53:588-593.
  • Lestari, P. and Suyata, S. 2019. Antibacterial activity of hydrolysate protein from Etawa goat milk hydrolysed by crude extract bromelain. IOP Conference Series: Materials Science and Engineering, 509 (1):012111. https://iopscience.iop.org/article/10.1088/1757-899X/509/1/012111/pdf (Erişim tarihi: 15/03/2019).
  • Lievore, P., Simões, D.R., Silva, K.M., Drunkler, N.L., Barana, A.C., Nogueira, A. and Demiate, I.M. (2015). Chemical characterisation and application of acid whey in fermented milk. Journal of Food Science and Technology, 52(4): 2083-2092.
  • Mann, B., Athira, S., Sharma, R., Kumar, R. and Sarkar, P. 2019. Bioactive peptides from whey proteins: Whey proteins. Ed.: Deeth, H.C, Bansal, N., Academic Press, Lonodon, United Kindom, pp: 519-547.
  • Masood, M.I., Qadir, M.I., Shirazi, J.H. and Khan, I.U. 2011. Beneficial effects of lactic acid bacteria on human beings. Critical Reviews in Microbiology, 37(1), 91-98.
  • Medeiros, V., Rainha, N., Paiva, L., Lima, E. and Baptista, J. 2014. Bovine milk formula based on partial hydrolysis of caseins by bromelain enzyme: Better digestibility and angiotensin-converting enzymeinhibitory properties. International journal of food properties, 17(4), 806-817.
  • Meisel, H. 1997. Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers, 43(2): 119-128.
  • Meisel, H. and Bockelmann, W.1999. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek, 76(1-4): 207-215.
  • Mohanty, D., Jena, R., Choudhury, P.K., Pattnaik, R., Mohapatra, S. and Saini, M.R., 2016. Milk derived antimicrobial bioactive peptides: a review. International Journal of Food Properties, 19 (4):837-846.
  • Neto, Y.A.A.H., Rosa, J.C. and Cabral, H. 2019. Peptides with antioxidant properties identified from casein, whey, and egg albumin hydrolysates generated by two novel fungal proteases. Preparative Biochemistry and Biotechnology, 49(7):639-648.
  • Osman, A., Goda, H.A., Abdel-Hamid, M., Badran, S.M. and Otte, J. 2016. Antibacterial peptides generated by alcalase hydrolysis of goat whey. Food Science and Technology, 65:480-486.
  • Owusu-Apenten, R. 2005. Colorimetric analysis of protein sulfhydyl groups in milk: applications and processing effects. Critical Reviews in Food Science and Nutrition, 45(1): 1-23.
  • Pereira de Souza, A.M., Bezerra de Farias, D.R., Brito de Queiroz, B., Suelleny de Caldas Nobre, M., Cavalcanti, M.T., Salles, H.O., Olbrich dos Santos, K.M., Dantas de Medeiros, A.C., Florentino, E.R. and Buriti, F.C.A. 2019. Influence of a co-culture of Streptococcus thermophilus and Lactobacillus casei on the proteolysis and ACE-inhibitory activity of a beverage based on reconstituted goat whey powder. Probiotics and Antimicrobial Proteins, 11:273–282.
  • Pérez, Y.A., Urista, C.M., Cerda, A.M., Sánchez, J.Á. and Rodríguez, F.R. 2019. Antihypertensive and antioxidant properties from whey protein hydrolysates produced by encapsulated Bacillus subtilis cells. International Journal of Peptide Research and Therapeutics, 25:681–689.
  • Pescuma, M., Hébert, E.M., Mozzi, F. and de Valdez, G.F. 2008. Whey fermentation by thermophilic lactic acid bacteria: Evolution of carbohydrates and protein content. Food Microbiology, 3(25): 442-451.
  • Pihlanto-Leppälä, A. 2001. Bioctive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends in Food Science and Technology, 11: 347-356.
  • Rocha, G.F., Kise, F., Rosso, A.M. and Parisi, M.G. 2017. Potential antioxidant peptides produced from whey hydrolysis with an immobilized aspartic protease from Salpichroa origanifolia fruits. Food Chemistry, 237:350-355.
  • Salami, M., Moosavi-Movahedi, A.A., Ehsani, M.R., Yousefi, R., Haertle, T., Chobert, J.M., Razavi, S.H., Henrich, R., Balalaie, S., Ebadi, S.A., Pourtakdoost, S. and Naslaji, A.N. 2010. Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. Journal of Agricultural and Food Chemistry, 58:3297–3302.
  • Santos-Sánchez, N.F., Salas-Coronado, R., Villanueva-Cañongo, C. and Hernández-Carlos, B. 2019. Antioxidant compounds and their antioxidant mechanism: Antioxidants, Ed.: Shlaby, E. IntechOpen Book, p1-20. https://www.intechopen.com/books/antioxidants/antioxidant-compounds-and-their-antioxidant-mechanism.
  • Sheskin, D.J. 2004. Handbook of Parametric and Nonparametric Statistical Procedures. (No. Ed 3.). Chapman and Hall ⁄CRC press, New York, 1193p.
  • Şanlı, T., Akal, H.C., Yetişemiyen, A., and Hayaloglu, A.A. 2018. Influence of adjunct cultures on angiotensin‐ converting enzyme (ACE)-inhibitory activity, organic acid content and peptide profile of kefir. International Journal of Dairy Technology, 71(1): 131-139.
  • Tavares, T.G., Monteiro, K.M., Possenti, A., Pintado, M.E., Carvalho, J.E. and Malcata, F.X. 2011. Antiulcerogenic activity of peptide concentrates obtained from hydrolysis of whey proteins by proteases from Cynara cardunculus. International Dairy Journal, 21(12): 934-939.
  • Tsai, J.S., Chen, T.J., Pan, B.S., Gong, S.D. and Chung, M. Y. 2008. Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry, 106(2): 552-558.
  • Usta, B. ve Yılmaz Ersan, L. (2013). Sütün antioksidan enzimleri ve biyolojik etkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 27(2):123-130.
  • Venegas-Ortega, M.G., Flores‐Gallegos, A.C., Martínez‐Hernández, J.L., Aguilar, C.N. and Nevárez‐Moorillón, G.V. 2019. Production of bioactive peptides from lactic acid bacteria: a sustainable approach for healthier foods. Comprehensive Reviews in Food Science and Food Safety, 18(4):1039-1051.
  • Virtanen, T., Pihlanto, A., Akkanen, S. and Korhonen, H. 2007. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. Journal of Applied Microbiology, 1(102): 1364-5072.
  • Welsh, G., Ryder, K., Brewster, J., Walker, C., Mros, S., Bekhit, A.E.D.A., McConnell, M. and Carne, A. 2017. Comparison of bioactive peptides prepared from sheep cheese whey using a food‐grade bacterial and a fungal protease preparation. International Journal of Food Science and Technology, 52(5):1252-1259.
  • Wróblewska, B. and Troszyñska, A. (2005). Enzymatic hydrolysis of cow's whey milk proteins in the aspect of their utilization for the production of hypoallergenic formulas. Polish Journal of Food and Nutrition Sciences, 14(4):349-357.
  • Yeaman, M.R. and Yount, N.Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews, 55(1): 27-55.

Some Bioactive Properties of Whey Applied Fermentation and Enzymatic Hydrolysis

Year 2021, Volume: 35 Issue: 2, 277 - 297, 01.12.2021

Abstract

In this study, it was aimed to produce whey enriched with bioactive peptides by both fermentation of
probiotic lactic acid bacteria and hydrolization of certain crude plant protease extracts (4%). Physico-chemical, microbiological and some bioactive properties of the fermented and hdyrolized whey samples were investigated. According to the findings of the study, proteolytic activities of the crude enzyme extracts obtained from the peels of pineapple, watermelon and artichoke were determined as 5.066, 4.921 ve 5.514 UI/mL, respectively. Angiotensin converting enzyme inhibitor activities of the fermented whey samples increased between 2.02 and 6.48 fold, while these inhibitor activity values of the whey samples hydrolyzed by the crude enzyme extracts increased between 1.85 and 3.29 fold. It was determined that an increase from 35 to 53 % in the antioxidant activities of the whey samples hydrolized by the crude enzyme extracts. As a result of electrophoretic analysis; it was determined that the degredations of β-lactoglobulin and α-lactalbumin were occurred by hydrolysis and fermentation at the different levels. An increase in cell of Lactobacillus acidophilus and Lactobacillus rhamnosus in fermented whey samples were found as 0.39 log cfu/mL and 1.09 log cfu/mL, respectively. It was determined that the fermented and hydrolized whey samples had no antimicrobial activity on Escherichia coli ATTC 25922, Staphylococcus aureus ATTC 6538, Listeria monocytogenes 4c RSKK 476, ve Salmonella enterica subsp. enterica serovar Typhimurium ATCC 700408.

Project Number

-

References

  • Abdel-Hamid, M., Otte, J., De Gobba, C., Osman, A. and Hamad, E. 2017. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. International Dairy Journal, 66: 91-98.
  • Aguilar-Toalá, J.E., Santiago-López, L., Peres, C.M., Peres, C., Garcia, H.S., Vallejo-Cordoba, B. and Hernández-Mendoza, A. 2017. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. Journal of Dairy Science, 100(1): 65-75.
  • Apak, R., Güçlü, K., Özyürek, M. and Karademir, S.E. 2004. A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: The CUPRAC method. Journal of Agricultural and Food Chemistry, 52:7970-7981.
  • Barros, R.M., Ferreira, C.A., Silva, S.V. and Malcata, F.X. 2001. Quantitative studies on the enzymatic hydrolysis of milk proteins brought about by cardosins precipitated by ammonium sulfate. Enzyme and Microbial Technology, 29(8-9): 541-547.
  • Benvenuti, S., Pellati F., Melegari, M., Bertelli, D., 2004. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of Food Science, 69: 164–169.
  • Blaschek, K. M., Wendorff, W. L. and Rankin, S. A. 2007. Survey of salty and sweet whey composition from various cheese plants in Wisconsin. Journal of Dairy Science, 90(4): 2029-2034.
  • Bradley, J.R.L, Arnold, J.E, Barbano, D.M, Semerad, R.G, Smith, D.E and Vines, B.K. 1992. Chemical and physical methods: Standard Methods for the Examination of Dairy Products, Ed .: Marshal R.T, American Public Health Association, Washington, DC, 433–531.
  • Büyüktuncel, E. 2013. Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler. Marmara Pharmaceutical Journal, 17: 93-103.
  • Brandelli, A., Daroit, D.J. and Correa, A.P.F. 2015. Whey as a source of peptides with remarkable biological activites. Food Research International, 73:149-161.
  • Chabance, B., Marteau P., Rambaud J.C., Migliore Samour, D., Boynard M., Perrotin P., Guillet R., Jollès, P. and Fait A.M. 1998. Casein peptide release and passage to the in humans during digestion of milk or yogurt. Biochimie, 80: 155-65.
  • Chaves-López, C., Serio, A., Paparella, A., Martuscelli, M., Corsetti, A., Tofalo, R. and Suzzi, G. 2014. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food microbiology, 42: 117-121.
  • Cherrat, L., Espina, L., Bakkali, M., Garcia-Gonzalo, D., Pagan, R. and Laglaoui, A. 2013. Chemical composition andantioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. Journal of the Science of Food and Agriculture, 94(6):1197-1204.
  • Correa, A.P.F, Daroit, D.J., Fontoura, R., Meira, S.M.M., Segalin, J. and Brandelli, A. 2014. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61: 48-55.
  • Cushman, D.W. and Cheung, H.S. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 7 (20): 1637-1648.
  • Dave, R.I. and Shah, N.P. 1996. Evaluation of Media for Selective Enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Bifidobacteria. Journal of Dairy Science, 79(9): 1529-1536.
  • Elbarbary, H.A., Ejima, A. and Sato, K. 2019. Generation of antibacterial peptides from crude cheese whey using pepsin and rennet enzymes at various pH conditions. Journal of the Science of Food and Agriculture, 99:555-563.
  • Esposito, M., Di Pierro, P., Dejonghe, W., Mariniello, L. and Porta, R. 2016. Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease. Food Chemistry, 204:115-121.
  • Guo, Y., Jiang, X., Xiong, B., Zhang, T., Zeng, X., Wu, Z., Sun, Y. and Pan, D. 2019. Production and transepithelial transportation of Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from whey protein hydrolyzed by immobilized Lactobacillus helveticus proteinase. Journal Dairy Science, 102:1–15.
  • Gür, F., Güzel, M., Öncül, N., Yıldırım, Z. ve Yıldırım, M. 2010. Süt serum proteinleri ve türevlerinin biyolojik ve fizyolojik aktiviteleri. Akademik Gıda, 8(1): 23-31.
  • Hamme, V., Sannier, F., Piot, J.M., Didelot, S. and Juchereau, S.B. 2009. Crude goat whey fermentation by Kluyveromyces marxianus and Lactobacillus rhamnosus: contribution to proteolysis and ACE inhibitory activity. Journal of Dairy Research, 76:152–157.
  • Hernández-Ledesma, B., Quirós, A., Amigo, L. and Recio, I. 2007. Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. International Dairy Journal, 17(1): 42-49.
  • Kailasapathy, K., Harmstorf, L. and Phillips, M. 2008. Survival of Lactobacillus acidophilus and Bifidobacterlum anamalis spp. lactics in stirred fruit yogurts. LWT Food Science and Technology, 41(7):1317-1322.
  • Kırca, A. ve Özkan, Ö. 2010. Değişik amaçlı bazı test ve analiz yöntemleri: Gıda analizleri, Ed.:Bekir Cemeroğlu, Gıda Teknolojisi Derneği Yayınları, Yayın No: 34, bizim Grup Basımevi, Ankara.
  • Konrad, B., Anna, D., Marek, S., Marta, P., Aleksandra, Z. and Jo´zefa, C. 2014. The evaluation of dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and angiotensin converting enzyme (ACE) Inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian pumpkin (Cucurbita ficifolia). International Journal of Peptide Research and Therapeutics, 20:483–491.
  • Korhonen, H. 2009. Milk-derived bioactive peptides: From science to applications Journal of Functional Foods, 1(2): 177-187.
  • Korhonen, H. and Pihlanto-Leppälä, A. 2000. Milk protein-derived bioactive peptides-novel opportunities for health promotion. Bulletin of IDF, 363: 17-26.
  • Korhonen, H. and Pihlanto-Leppälä, A. 2006. Bioactive peptides: production and functionality. International Dairy Journal. 16(9): 945-960.
  • Lacroix, I.M.E., Meng, G., Cheung, I.W.Y. and Li-Chan, E.C.Y. 2016. Do whey protein-derived peptides have dual dipeptidyl-peptidase IV and angiotensin I-converting enzyme inhibitory activities? Journal of Functional Foods, 21: 87–96.
  • Le Blanc, J. G., Matar, C., Valdez, J. C., LeBlanc, J. and Perdigon, G. 2002. Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. Journal of Dairy Science, 85(11): 2733-2742.
  • Ledesma, B.H., Davalos, A., Bartolome, B. and Amigo, L. 2005. Preparation of antioxidant enzymatic hydrolysates from alpha-Lactalbumin and beta-Lactoglobulin identification of active peptides by HPLCMS/MS. Journal of Agriculture and Food Chemistry, 53:588-593.
  • Lestari, P. and Suyata, S. 2019. Antibacterial activity of hydrolysate protein from Etawa goat milk hydrolysed by crude extract bromelain. IOP Conference Series: Materials Science and Engineering, 509 (1):012111. https://iopscience.iop.org/article/10.1088/1757-899X/509/1/012111/pdf (Erişim tarihi: 15/03/2019).
  • Lievore, P., Simões, D.R., Silva, K.M., Drunkler, N.L., Barana, A.C., Nogueira, A. and Demiate, I.M. (2015). Chemical characterisation and application of acid whey in fermented milk. Journal of Food Science and Technology, 52(4): 2083-2092.
  • Mann, B., Athira, S., Sharma, R., Kumar, R. and Sarkar, P. 2019. Bioactive peptides from whey proteins: Whey proteins. Ed.: Deeth, H.C, Bansal, N., Academic Press, Lonodon, United Kindom, pp: 519-547.
  • Masood, M.I., Qadir, M.I., Shirazi, J.H. and Khan, I.U. 2011. Beneficial effects of lactic acid bacteria on human beings. Critical Reviews in Microbiology, 37(1), 91-98.
  • Medeiros, V., Rainha, N., Paiva, L., Lima, E. and Baptista, J. 2014. Bovine milk formula based on partial hydrolysis of caseins by bromelain enzyme: Better digestibility and angiotensin-converting enzymeinhibitory properties. International journal of food properties, 17(4), 806-817.
  • Meisel, H. 1997. Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers, 43(2): 119-128.
  • Meisel, H. and Bockelmann, W.1999. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek, 76(1-4): 207-215.
  • Mohanty, D., Jena, R., Choudhury, P.K., Pattnaik, R., Mohapatra, S. and Saini, M.R., 2016. Milk derived antimicrobial bioactive peptides: a review. International Journal of Food Properties, 19 (4):837-846.
  • Neto, Y.A.A.H., Rosa, J.C. and Cabral, H. 2019. Peptides with antioxidant properties identified from casein, whey, and egg albumin hydrolysates generated by two novel fungal proteases. Preparative Biochemistry and Biotechnology, 49(7):639-648.
  • Osman, A., Goda, H.A., Abdel-Hamid, M., Badran, S.M. and Otte, J. 2016. Antibacterial peptides generated by alcalase hydrolysis of goat whey. Food Science and Technology, 65:480-486.
  • Owusu-Apenten, R. 2005. Colorimetric analysis of protein sulfhydyl groups in milk: applications and processing effects. Critical Reviews in Food Science and Nutrition, 45(1): 1-23.
  • Pereira de Souza, A.M., Bezerra de Farias, D.R., Brito de Queiroz, B., Suelleny de Caldas Nobre, M., Cavalcanti, M.T., Salles, H.O., Olbrich dos Santos, K.M., Dantas de Medeiros, A.C., Florentino, E.R. and Buriti, F.C.A. 2019. Influence of a co-culture of Streptococcus thermophilus and Lactobacillus casei on the proteolysis and ACE-inhibitory activity of a beverage based on reconstituted goat whey powder. Probiotics and Antimicrobial Proteins, 11:273–282.
  • Pérez, Y.A., Urista, C.M., Cerda, A.M., Sánchez, J.Á. and Rodríguez, F.R. 2019. Antihypertensive and antioxidant properties from whey protein hydrolysates produced by encapsulated Bacillus subtilis cells. International Journal of Peptide Research and Therapeutics, 25:681–689.
  • Pescuma, M., Hébert, E.M., Mozzi, F. and de Valdez, G.F. 2008. Whey fermentation by thermophilic lactic acid bacteria: Evolution of carbohydrates and protein content. Food Microbiology, 3(25): 442-451.
  • Pihlanto-Leppälä, A. 2001. Bioctive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends in Food Science and Technology, 11: 347-356.
  • Rocha, G.F., Kise, F., Rosso, A.M. and Parisi, M.G. 2017. Potential antioxidant peptides produced from whey hydrolysis with an immobilized aspartic protease from Salpichroa origanifolia fruits. Food Chemistry, 237:350-355.
  • Salami, M., Moosavi-Movahedi, A.A., Ehsani, M.R., Yousefi, R., Haertle, T., Chobert, J.M., Razavi, S.H., Henrich, R., Balalaie, S., Ebadi, S.A., Pourtakdoost, S. and Naslaji, A.N. 2010. Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. Journal of Agricultural and Food Chemistry, 58:3297–3302.
  • Santos-Sánchez, N.F., Salas-Coronado, R., Villanueva-Cañongo, C. and Hernández-Carlos, B. 2019. Antioxidant compounds and their antioxidant mechanism: Antioxidants, Ed.: Shlaby, E. IntechOpen Book, p1-20. https://www.intechopen.com/books/antioxidants/antioxidant-compounds-and-their-antioxidant-mechanism.
  • Sheskin, D.J. 2004. Handbook of Parametric and Nonparametric Statistical Procedures. (No. Ed 3.). Chapman and Hall ⁄CRC press, New York, 1193p.
  • Şanlı, T., Akal, H.C., Yetişemiyen, A., and Hayaloglu, A.A. 2018. Influence of adjunct cultures on angiotensin‐ converting enzyme (ACE)-inhibitory activity, organic acid content and peptide profile of kefir. International Journal of Dairy Technology, 71(1): 131-139.
  • Tavares, T.G., Monteiro, K.M., Possenti, A., Pintado, M.E., Carvalho, J.E. and Malcata, F.X. 2011. Antiulcerogenic activity of peptide concentrates obtained from hydrolysis of whey proteins by proteases from Cynara cardunculus. International Dairy Journal, 21(12): 934-939.
  • Tsai, J.S., Chen, T.J., Pan, B.S., Gong, S.D. and Chung, M. Y. 2008. Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry, 106(2): 552-558.
  • Usta, B. ve Yılmaz Ersan, L. (2013). Sütün antioksidan enzimleri ve biyolojik etkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 27(2):123-130.
  • Venegas-Ortega, M.G., Flores‐Gallegos, A.C., Martínez‐Hernández, J.L., Aguilar, C.N. and Nevárez‐Moorillón, G.V. 2019. Production of bioactive peptides from lactic acid bacteria: a sustainable approach for healthier foods. Comprehensive Reviews in Food Science and Food Safety, 18(4):1039-1051.
  • Virtanen, T., Pihlanto, A., Akkanen, S. and Korhonen, H. 2007. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. Journal of Applied Microbiology, 1(102): 1364-5072.
  • Welsh, G., Ryder, K., Brewster, J., Walker, C., Mros, S., Bekhit, A.E.D.A., McConnell, M. and Carne, A. 2017. Comparison of bioactive peptides prepared from sheep cheese whey using a food‐grade bacterial and a fungal protease preparation. International Journal of Food Science and Technology, 52(5):1252-1259.
  • Wróblewska, B. and Troszyñska, A. (2005). Enzymatic hydrolysis of cow's whey milk proteins in the aspect of their utilization for the production of hypoallergenic formulas. Polish Journal of Food and Nutrition Sciences, 14(4):349-357.
  • Yeaman, M.R. and Yount, N.Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews, 55(1): 27-55.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Articles
Authors

Atilla Taş This is me 0000-0001-7162-6762

Onur Güneşer 0000-0002-3927-4469

Project Number -
Publication Date December 1, 2021
Submission Date October 16, 2020
Published in Issue Year 2021 Volume: 35 Issue: 2

Cite

APA Taş, A., & Güneşer, O. (2021). Fermentasyon ve Enzimatik Hidroliz Uygulanan Peynir Altı Sularının Bazı Biyoaktif Özellikleri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 35(2), 277-297.

TR Dizin kriterleri gereği dergimize gönderilecek olan makalelerin mutlaka aşağıda belirtilen hususlara uyması gerekmektedir.

Tüm bilim dallarında yapılan, ve etik kurul kararı gerektiren klinik ve deneysel insan ve hayvanlar üzerindeki çalışmalar için ayrı ayrı etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
Makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmelidir.
Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.
Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi.
Etik Kurul izni gerektiren araştırmalar aşağıdaki gibidir.
- Anket, mülakat, odak grup çalışması, gözlem, deney, görüşme teknikleri kullanılarak katılımcılardan veri toplanmasını gerektiren nitel ya da nicel yaklaşımlarla yürütülen her türlü araştırmalar
- İnsan ve hayvanların (materyal/veriler dahil) deneysel ya da diğer bilimsel amaçlarla kullanılması,
- İnsanlar üzerinde yapılan klinik araştırmalar,
- Hayvanlar üzerinde yapılan araştırmalar,
- Kişisel verilerin korunması kanunu gereğince retrospektif çalışmalar,
Ayrıca;
- Olgu sunumlarında “Aydınlatılmış onam formu”nun alındığının belirtilmesi,
- Başkalarına ait ölçek, anket, fotoğrafların kullanımı için sahiplerinden izin alınması ve belirtilmesi,
- Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine uyulduğunun belirtilmesi.



Makale başvurusunda;

(1) Tam metin makale, Dergi yazım kurallarına uygun olmalı, Makalenin ilk sayfasında ve teşekkür bilgi notu kısmında Araştırma ve Yayın Etiğine uyulduğuna ve Etik kurul izni gerektirmediğine dair ifadeye yer verilmelidir. Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmeli ve sisteme belgenin yüklenmesi gerekmektedir. (Dergiye gönderilen makalelerde; konu ile ilgili olarak derginin daha önceki sayılarında yayımlanan en az bir yayına atıf yapılması önem arz etmektedir. Dergiye yapılan atıflarda “Bursa Uludag Üniv. Ziraat Fak. Derg.” kısaltması kullanılmalıdır.)

(2) Tam metin makalenin taratıldığını gösteren benzerlik raporu (Ithenticate, intihal.net) (% 20’nin altında olmalıdır),

(3) İmzalanmış ve taratılmış başvuru formu, Dergi web sayfasında yer alan başvuru formunun başvuran tarafından İmzalanıp, taratılarak yüklenmesi , (Ön yazı yerine)

(4) Tüm yazarlar tarafından imzalanmış telif hakkı devir formunun taranmış kopyası,

(5) Araştırmacıların Katkı Oranı beyanı, Çıkar Çatışması beyanı verilmesi Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi ve sisteme belgenin (Tüm yazarlar tarafından imzalanmış bir yazı) yüklenmesi gerekmektedir.

Belgelerin elektronik formatta DergiPark sistemine https://dergipark.org.tr/tr/login adresinden kayıt olunarak başvuru sırasında yüklenmesi mümkündür. 


25056 

Journal of Agricultural Faculty of Bursa Uludag University is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.