Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 4, 208 - 216, 27.12.2021
https://doi.org/10.33434/cams.941324

Abstract

References

  • [1] G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig , (1883).
  • [2] T. Matsuyama, R. Ikehata, On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl. 204, 729–753 (1996).
  • [3] K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl. 216, 321–342 (1997).
  • [4] E. Pis¸kin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Math. 13, 408–420 (2015).
  • [5] J. Zhou, Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping, Appl. Math. Comput. 265, 807–818 (2015).
  • [6] R. Ikehata, A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms, Differ. Integral Equ. 8, 607–616 (1995).
  • [7] S. A. Messaoudi, Blow-up of solutions for the Kirchhoff equation of q􀀀Laplacian type with nonlinear dissipation, Colloq. Math. 94, 103–109 (2002).
  • [8] K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Meth. Appl. Sci. 20, 151–177 (1997).
  • [9] C. O. Alves, F. J. S. A. Corr ˆ ea, T. F. Ma, Positive Solutions for a Quasilinear Elliptic Equation of Kirchhoff Type, Comput. Math. Appl. 49, 85–93 (2005).
  • [10] A. Yang, Z. Gong, Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with arbitrary positive initial energy, Electron. J. Differ. Equ. 332, 1–8 (2016).
  • [11] M. Shahrouzi, F. Kargarfard, Blow-up of solutions for a Kirchhoff type equation with variable-exponent nonlinearities, J. App. Anal. 27(1), 97–105 (2021).
  • [12] S. N. Antontsev, J. Ferreira, E. Pis¸kin, S. M. S. Cordeiro, Existence and non-existence of solutions for Timoshenko-type equations with variable exponents, Nonlinear Anal. Real World Appl. 61, 103341, (2021).
  • [13] E. Pis¸kin, Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents, Int. J. Nonlinear Anal. Appl. 11(1), 37–45 (2020).
  • [14] M. Shahrouzi, Blow up of solutions for a r(x)􀀀Laplacian Lam´e equation with variable-exponent nonlinearities and arbitrary initial energy level, Int. J. Nonlinear Anal. Appl. 13(1), 441–450 (2022).
  • [15] M. Shahrouzi, General decay and blow up of solutions for a class of inverse problem with elasticity term and variableexponent nonlinearities, Math. Meth. Appl. Sci. 2021. DOI: https://doi.org/10.1002/mma.7891.
  • [16] G. Dai, R. Hao, Existence of solutionsfor a p(x)􀀀Kirchhoff-type equation, J. Math. Anal. Appl. 359, 275–284 (2009). [17] M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovˇe, Existence and multiplicity results for a new p(x)􀀀Kirchhoff problem, Nonlinear Analysis 190, 111598 (2020).
  • [18] G. Dai, R. Ma, Solutions for a p(x)􀀀Kirchhoff type equation with Neumann boundary data, Nonlinear Analysis: Real World Applications 12 , 2666–2680 (2011).
  • [19] A. Ghanmi, Nontrivial solutions for Kirchhoff-type problems involving the p(x)􀀀Laplace operator, Rocky Mount. J. Math. 48(4), 1145–1158 (2018).
  • [20] E. J. Hurtado, O. H. Miyagaki, R. D. S. Rodrigues, Existence and Asymptotic Behaviour for a Kirchhoff Type Equation With Variable Critical Growth Exponent, Milan J. Math. 85, 71–102 (2017).
  • [21] S. Heidarkhani, A. L. A. De Araujo, G. A. Afrouzi, S. Moradi, Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Math. Nachr. 291(2), 326–342 (2018).
  • [22] M. Shahrouzi, On behaviour of solutions for a nonlinear viscoelastic equation with variable-exponent nonlinearities, Comp. Math. Appl. 75, 3946–3956 (2018).
  • [23] M. Shahrouzi, Global nonexistence of solutions for a class of viscoelastic Lam´e system, Indian J. Pure Appl. Math. 51(4), 1383–1397 (2020).
  • [24] L. Diening, P. Hasto, et al. Lebesgue and Sobolev spaces with variable exponents, Springer-Verlag, (2011).
  • [25] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, Stud. Math. 143, 267–293 (2000).
  • [26] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent II, Math. Nachr. 246, 53–67 (2002).
  • [27] X. Fan, D. Zhao, On the spaces Lp(x) andWm;p(x)(W), J. Math. Anal. Appl. 263, 424–446 (2001).
  • [28] X. Fan, Q. H. Zhang, Existence of solutions for p(x)􀀀Laplacian Dirichlet problem, Nonlinear Anal. 52, 1843–1852 (2003).

A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy

Year 2021, Volume: 4 Issue: 4, 208 - 216, 27.12.2021
https://doi.org/10.33434/cams.941324

Abstract

In this paper we consider $r(x)-$Kirchhoff type equation with variable-exponent nonlinearity of the form $$ u_{tt}-\Delta u-\big(a+b\int_{\Omega}\frac{1}{r(x)}|\nabla u|^{r(x)}dx\big)\Delta_{r(x)}u+\beta u_{t}=|u|^{p(x)-2}u, $$ associated with initial and Dirichlet boundary conditions. Under appropriate conditions on $r(.)$ and $p(.)$, stability result along the solution energy is proved. It is also shown that regarding arbitrary positive initial energy and suitable range of variable exponents, solutions blow-up in a finite time.

References

  • [1] G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig , (1883).
  • [2] T. Matsuyama, R. Ikehata, On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl. 204, 729–753 (1996).
  • [3] K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl. 216, 321–342 (1997).
  • [4] E. Pis¸kin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Math. 13, 408–420 (2015).
  • [5] J. Zhou, Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping, Appl. Math. Comput. 265, 807–818 (2015).
  • [6] R. Ikehata, A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms, Differ. Integral Equ. 8, 607–616 (1995).
  • [7] S. A. Messaoudi, Blow-up of solutions for the Kirchhoff equation of q􀀀Laplacian type with nonlinear dissipation, Colloq. Math. 94, 103–109 (2002).
  • [8] K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Meth. Appl. Sci. 20, 151–177 (1997).
  • [9] C. O. Alves, F. J. S. A. Corr ˆ ea, T. F. Ma, Positive Solutions for a Quasilinear Elliptic Equation of Kirchhoff Type, Comput. Math. Appl. 49, 85–93 (2005).
  • [10] A. Yang, Z. Gong, Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with arbitrary positive initial energy, Electron. J. Differ. Equ. 332, 1–8 (2016).
  • [11] M. Shahrouzi, F. Kargarfard, Blow-up of solutions for a Kirchhoff type equation with variable-exponent nonlinearities, J. App. Anal. 27(1), 97–105 (2021).
  • [12] S. N. Antontsev, J. Ferreira, E. Pis¸kin, S. M. S. Cordeiro, Existence and non-existence of solutions for Timoshenko-type equations with variable exponents, Nonlinear Anal. Real World Appl. 61, 103341, (2021).
  • [13] E. Pis¸kin, Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents, Int. J. Nonlinear Anal. Appl. 11(1), 37–45 (2020).
  • [14] M. Shahrouzi, Blow up of solutions for a r(x)􀀀Laplacian Lam´e equation with variable-exponent nonlinearities and arbitrary initial energy level, Int. J. Nonlinear Anal. Appl. 13(1), 441–450 (2022).
  • [15] M. Shahrouzi, General decay and blow up of solutions for a class of inverse problem with elasticity term and variableexponent nonlinearities, Math. Meth. Appl. Sci. 2021. DOI: https://doi.org/10.1002/mma.7891.
  • [16] G. Dai, R. Hao, Existence of solutionsfor a p(x)􀀀Kirchhoff-type equation, J. Math. Anal. Appl. 359, 275–284 (2009). [17] M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovˇe, Existence and multiplicity results for a new p(x)􀀀Kirchhoff problem, Nonlinear Analysis 190, 111598 (2020).
  • [18] G. Dai, R. Ma, Solutions for a p(x)􀀀Kirchhoff type equation with Neumann boundary data, Nonlinear Analysis: Real World Applications 12 , 2666–2680 (2011).
  • [19] A. Ghanmi, Nontrivial solutions for Kirchhoff-type problems involving the p(x)􀀀Laplace operator, Rocky Mount. J. Math. 48(4), 1145–1158 (2018).
  • [20] E. J. Hurtado, O. H. Miyagaki, R. D. S. Rodrigues, Existence and Asymptotic Behaviour for a Kirchhoff Type Equation With Variable Critical Growth Exponent, Milan J. Math. 85, 71–102 (2017).
  • [21] S. Heidarkhani, A. L. A. De Araujo, G. A. Afrouzi, S. Moradi, Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Math. Nachr. 291(2), 326–342 (2018).
  • [22] M. Shahrouzi, On behaviour of solutions for a nonlinear viscoelastic equation with variable-exponent nonlinearities, Comp. Math. Appl. 75, 3946–3956 (2018).
  • [23] M. Shahrouzi, Global nonexistence of solutions for a class of viscoelastic Lam´e system, Indian J. Pure Appl. Math. 51(4), 1383–1397 (2020).
  • [24] L. Diening, P. Hasto, et al. Lebesgue and Sobolev spaces with variable exponents, Springer-Verlag, (2011).
  • [25] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, Stud. Math. 143, 267–293 (2000).
  • [26] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent II, Math. Nachr. 246, 53–67 (2002).
  • [27] X. Fan, D. Zhao, On the spaces Lp(x) andWm;p(x)(W), J. Math. Anal. Appl. 263, 424–446 (2001).
  • [28] X. Fan, Q. H. Zhang, Existence of solutions for p(x)􀀀Laplacian Dirichlet problem, Nonlinear Anal. 52, 1843–1852 (2003).
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mohammad Shahrouzi

Jorge Ferreıra

Publication Date December 27, 2021
Submission Date May 25, 2021
Acceptance Date December 13, 2021
Published in Issue Year 2021 Volume: 4 Issue: 4

Cite

APA Shahrouzi, M., & Ferreıra, J. (2021). A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy. Communications in Advanced Mathematical Sciences, 4(4), 208-216. https://doi.org/10.33434/cams.941324
AMA Shahrouzi M, Ferreıra J. A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy. Communications in Advanced Mathematical Sciences. December 2021;4(4):208-216. doi:10.33434/cams.941324
Chicago Shahrouzi, Mohammad, and Jorge Ferreıra. “A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions With Positive Initial Energy”. Communications in Advanced Mathematical Sciences 4, no. 4 (December 2021): 208-16. https://doi.org/10.33434/cams.941324.
EndNote Shahrouzi M, Ferreıra J (December 1, 2021) A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy. Communications in Advanced Mathematical Sciences 4 4 208–216.
IEEE M. Shahrouzi and J. Ferreıra, “A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy”, Communications in Advanced Mathematical Sciences, vol. 4, no. 4, pp. 208–216, 2021, doi: 10.33434/cams.941324.
ISNAD Shahrouzi, Mohammad - Ferreıra, Jorge. “A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions With Positive Initial Energy”. Communications in Advanced Mathematical Sciences 4/4 (December 2021), 208-216. https://doi.org/10.33434/cams.941324.
JAMA Shahrouzi M, Ferreıra J. A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy. Communications in Advanced Mathematical Sciences. 2021;4:208–216.
MLA Shahrouzi, Mohammad and Jorge Ferreıra. “A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions With Positive Initial Energy”. Communications in Advanced Mathematical Sciences, vol. 4, no. 4, 2021, pp. 208-16, doi:10.33434/cams.941324.
Vancouver Shahrouzi M, Ferreıra J. A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy. Communications in Advanced Mathematical Sciences. 2021;4(4):208-16.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..