Research Article
BibTex RIS Cite

Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰

Year 2019, , 1294 - 1300, 01.08.2019
https://doi.org/10.31801/cfsuasmas.524481

Abstract

The equitable edge chromatic number is the minimum number of colors required to color the edges of a graph G and satisfies the criterion, if for each vertex v∈V(G), the number of edges of any one color incident with v differs from the number of edges of any other color incident with v by atmost one. In this paper, the equitable edge chromatic number of tensor product of Path P_{m} coupled with Crown S_{n}⁰ and also two Crown graphs S_{m}⁰ along with S_{n}⁰ are obtained.

References

  • Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications, New York; The Macmillan Press Ltd, 1976.
  • Harary, Frank, Graph Theory, Narosa Publishing home 1969.
  • Hilton, A.J.W. and de Werra, D.,A sufficient condition for equitable edge-colorings of simple graphs, Discrete Mathematics 128, (1994), 179-201.
  • Meyer, W., Equitable Coloring, Amer. Math. Monthly, 80 (1973), 920-922.
  • Veninstine Vivik, J. and Girija, G., Equitable edge coloring of some graphs, Utilitas Mathematica, 96, (2015), 27--32.
  • Veninstine Vivik, J., and Girija, G., Equitable Edge Chromatic Number of Mycielskian of Graphs, Far East Journal of Mathematics, 101(9), 2017, 1887-1895.
  • Vizing, V.G., Critical graphs with given chromatic class, Metody Diskret. Analiz., 5(1965), 9-17.
  • Weichsel, Paul.M., The Kronecker product of graphs, Proc. Amer. Math. Society, Vol.8, (1962), 47-52.
  • Lin, Wu-Hsiung and Chang, Gerard, J., Equitable Colorings of Kronecker product of Graphs, Discrete Applied Mathematics, Vol.158, (2010), 1816-1826.
  • Zhang, Xia and Liu, Guizhen, Equitable edge-colorings of simple graphs, Journal of Graph Theory, 66, (2010), 175-197.
Year 2019, , 1294 - 1300, 01.08.2019
https://doi.org/10.31801/cfsuasmas.524481

Abstract

References

  • Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications, New York; The Macmillan Press Ltd, 1976.
  • Harary, Frank, Graph Theory, Narosa Publishing home 1969.
  • Hilton, A.J.W. and de Werra, D.,A sufficient condition for equitable edge-colorings of simple graphs, Discrete Mathematics 128, (1994), 179-201.
  • Meyer, W., Equitable Coloring, Amer. Math. Monthly, 80 (1973), 920-922.
  • Veninstine Vivik, J. and Girija, G., Equitable edge coloring of some graphs, Utilitas Mathematica, 96, (2015), 27--32.
  • Veninstine Vivik, J., and Girija, G., Equitable Edge Chromatic Number of Mycielskian of Graphs, Far East Journal of Mathematics, 101(9), 2017, 1887-1895.
  • Vizing, V.G., Critical graphs with given chromatic class, Metody Diskret. Analiz., 5(1965), 9-17.
  • Weichsel, Paul.M., The Kronecker product of graphs, Proc. Amer. Math. Society, Vol.8, (1962), 47-52.
  • Lin, Wu-Hsiung and Chang, Gerard, J., Equitable Colorings of Kronecker product of Graphs, Discrete Applied Mathematics, Vol.158, (2010), 1816-1826.
  • Zhang, Xia and Liu, Guizhen, Equitable edge-colorings of simple graphs, Journal of Graph Theory, 66, (2010), 175-197.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

J. Veninstine Vivik This is me 0000-0003-3192-003X

Publication Date August 1, 2019
Submission Date February 5, 2018
Acceptance Date June 25, 2018
Published in Issue Year 2019

Cite

APA Veninstine Vivik, J. (2019). Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1294-1300. https://doi.org/10.31801/cfsuasmas.524481
AMA Veninstine Vivik J. Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1294-1300. doi:10.31801/cfsuasmas.524481
Chicago Veninstine Vivik, J. “Equitable Edge Chromatic Number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1294-1300. https://doi.org/10.31801/cfsuasmas.524481.
EndNote Veninstine Vivik J (August 1, 2019) Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1294–1300.
IEEE J. Veninstine Vivik, “Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1294–1300, 2019, doi: 10.31801/cfsuasmas.524481.
ISNAD Veninstine Vivik, J. “Equitable Edge Chromatic Number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1294-1300. https://doi.org/10.31801/cfsuasmas.524481.
JAMA Veninstine Vivik J. Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1294–1300.
MLA Veninstine Vivik, J. “Equitable Edge Chromatic Number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1294-00, doi:10.31801/cfsuasmas.524481.
Vancouver Veninstine Vivik J. Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1294-300.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.