Research Article
BibTex RIS Cite
Year 2020, , 646 - 653, 30.06.2020
https://doi.org/10.31801/cfsuasmas.567734

Abstract

References

  • Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
  • Fridy, J. A., On statistical convergence, Analysis, 5 (1985) 301-313.
  • Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187-1192.
  • Fridy, J. A. and Orhan,C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 125 (1997), 3625-3631.
  • Fridy, J. A. and Orhan, C., Statistical core theorems, J. Math. Anal. Appl., 208 (1997), 520-527.
  • Connor, J., The statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988) 47-63.
  • Connor, J., On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32 (1989), 194-198.
  • Connor, J., Demirci, K. and Orhan, C., Multipliers and factorization for bounded statistically convergence sequences, Analysis (Munich) 22(4) (2002), 321-333.
  • Demirci, K. and Orhan, C., Bounded multipliers of bounded A-statistically convergent sequences, Journal of Mathematical Analysis and Applications, 235 (1999), 122-129.
  • Ganichev, M. and Kadets, V., Filter convergence in Banach spaces and generalized bases, Taras Banach (Ed.), General Topology in Banach Spaces, NOVA Science Publishers, Huntington, New York (2001), 61-69.
  • Sakaoğlu Özgüç, I. and Yurdakadim, T., On quasi-statistical convergence, Commun. Fac. Sci. Univ. Ank. Series A1, 61 (2012), 11-17.
  • Šalát, T., On statistically convergent sequences of real numbers, Math. Slovaca, 30(2) (1980), 139-150.
  • Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
  • Steinhaus, H., Sur la convergence ordinarie et la convergence asymtotique, Colloq. Math., 2 (1951), 73-74.
  • Yurdakadim, T., Taş, E. and Sakaoğlu, İ., Approximation of functions by the sequence of integral operators, Appl. Math. Comput., 219 (2012), 3863-3871.
  • Zygmund, A., Trigonometric series, 2nd Ed. Cambridge Univ. Press, 1979.

Results on quasi-statistical limit and quasi-statistical cluster points

Year 2020, , 646 - 653, 30.06.2020
https://doi.org/10.31801/cfsuasmas.567734

Abstract

In this paper we introduce the concepts of quasi-statistical limit point and quasi-statistical cluster point of a sequence. We give some inclusion results concerning these concepts. We also give the relationship between the Knopp core and quasi-statistical core of a sequence. Finally we state some theorems which deal with quasi-summability and quasi-statistical convergence of a sequence under some assumptions.

References

  • Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
  • Fridy, J. A., On statistical convergence, Analysis, 5 (1985) 301-313.
  • Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187-1192.
  • Fridy, J. A. and Orhan,C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 125 (1997), 3625-3631.
  • Fridy, J. A. and Orhan, C., Statistical core theorems, J. Math. Anal. Appl., 208 (1997), 520-527.
  • Connor, J., The statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988) 47-63.
  • Connor, J., On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32 (1989), 194-198.
  • Connor, J., Demirci, K. and Orhan, C., Multipliers and factorization for bounded statistically convergence sequences, Analysis (Munich) 22(4) (2002), 321-333.
  • Demirci, K. and Orhan, C., Bounded multipliers of bounded A-statistically convergent sequences, Journal of Mathematical Analysis and Applications, 235 (1999), 122-129.
  • Ganichev, M. and Kadets, V., Filter convergence in Banach spaces and generalized bases, Taras Banach (Ed.), General Topology in Banach Spaces, NOVA Science Publishers, Huntington, New York (2001), 61-69.
  • Sakaoğlu Özgüç, I. and Yurdakadim, T., On quasi-statistical convergence, Commun. Fac. Sci. Univ. Ank. Series A1, 61 (2012), 11-17.
  • Šalát, T., On statistically convergent sequences of real numbers, Math. Slovaca, 30(2) (1980), 139-150.
  • Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
  • Steinhaus, H., Sur la convergence ordinarie et la convergence asymtotique, Colloq. Math., 2 (1951), 73-74.
  • Yurdakadim, T., Taş, E. and Sakaoğlu, İ., Approximation of functions by the sequence of integral operators, Appl. Math. Comput., 219 (2012), 3863-3871.
  • Zygmund, A., Trigonometric series, 2nd Ed. Cambridge Univ. Press, 1979.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

İlknur Özgüç 0000-0002-6622-8249

Publication Date June 30, 2020
Submission Date May 20, 2019
Acceptance Date November 26, 2019
Published in Issue Year 2020

Cite

APA Özgüç, İ. (2020). Results on quasi-statistical limit and quasi-statistical cluster points. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 646-653. https://doi.org/10.31801/cfsuasmas.567734
AMA Özgüç İ. Results on quasi-statistical limit and quasi-statistical cluster points. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):646-653. doi:10.31801/cfsuasmas.567734
Chicago Özgüç, İlknur. “Results on Quasi-Statistical Limit and Quasi-Statistical Cluster Points”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 646-53. https://doi.org/10.31801/cfsuasmas.567734.
EndNote Özgüç İ (June 1, 2020) Results on quasi-statistical limit and quasi-statistical cluster points. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 646–653.
IEEE İ. Özgüç, “Results on quasi-statistical limit and quasi-statistical cluster points”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 646–653, 2020, doi: 10.31801/cfsuasmas.567734.
ISNAD Özgüç, İlknur. “Results on Quasi-Statistical Limit and Quasi-Statistical Cluster Points”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 646-653. https://doi.org/10.31801/cfsuasmas.567734.
JAMA Özgüç İ. Results on quasi-statistical limit and quasi-statistical cluster points. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:646–653.
MLA Özgüç, İlknur. “Results on Quasi-Statistical Limit and Quasi-Statistical Cluster Points”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 646-53, doi:10.31801/cfsuasmas.567734.
Vancouver Özgüç İ. Results on quasi-statistical limit and quasi-statistical cluster points. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):646-53.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.