Research Article
BibTex RIS Cite
Year 2021, , 229 - 240, 30.06.2021
https://doi.org/10.31801/cfsuasmas.784080

Abstract

References

  • Alb Lupa¸s, A., A note on special fuzzy differential subordinations using multiplier transformation and Ruschewehy derivative, J. Computational Analysis and Applications, 25 (6) (2018), 1116-1124.
  • Alb Lupa¸s, A., Oros, Gh., On special fuzzy differential subordinations using Salagean and Ruscheweyh operators, Applied Mathematics and Computation, 261 (2015), 119-127.
  • Haydar, E. A., On fuzzy differential subordination, Mathematica Moravica,19 (1) (2015), 123-129.
  • Ibrahim, R. W., On the Subordination and Super-Ordination Concepts with Applications, Journal of Computational and Theoretical Nanoscience, 14 (5) (2017), 2248-2254.
  • Gal, S. G., Ban, A. I., Elements of Fuzzy Mathematics, Editura Universitatii din Oradea, 1996. (in Romanian)
  • Miller, S. S., Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 298-305.
  • Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
  • Miller, S. S., Mocanu, P. T., Differential Subordinations. Theory and Applications, Marcel Dekker, Inc., New York, Basel, 2000.
  • Oros, G. I., Oros, Gh., The notion of subordination in fuzzy sets theory, General Mathematics, 19 (4) (2011), 97-103.
  • Oros, G. I., Oros, Gh., Fuzzy differential subordination, Acta Universitatis Apulensis, 3 (2012), 55-64.
  • Oros, G. I., Oros, Gh., Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2) (2012), 239-248.
  • Oros G.I., Briot-Bouquet fuzzy differential subordination, Analele Universitatii Oradea, Fasc. Mathematica, 19 (2) (2012), 83-97.
  • Oros, G. I., Oros, Gh., Diaconu R., Differential subordinations obtained with some new integral operators, J. Computational Analysis and Applications, 19 (5) (2015), 904-910.
  • Pommerenke Ch., Univalent Functions, Vanderhoeck and Ruprecht, Gottingen, 1975.
  • Wanas, A. K., Majeed, A. H., Fuzzy differential subordination properties of analytic functions involving generalized differential operator, Sci.Int.(Lahore), 30 (2) (2018), 297-302.

New fuzzy differential subordinations

Year 2021, , 229 - 240, 30.06.2021
https://doi.org/10.31801/cfsuasmas.784080

Abstract

In this paper, some new fuzzy differential subordinations obtained by using the integral operator Im γ : An →An  introduced in [13] are obtained.

References

  • Alb Lupa¸s, A., A note on special fuzzy differential subordinations using multiplier transformation and Ruschewehy derivative, J. Computational Analysis and Applications, 25 (6) (2018), 1116-1124.
  • Alb Lupa¸s, A., Oros, Gh., On special fuzzy differential subordinations using Salagean and Ruscheweyh operators, Applied Mathematics and Computation, 261 (2015), 119-127.
  • Haydar, E. A., On fuzzy differential subordination, Mathematica Moravica,19 (1) (2015), 123-129.
  • Ibrahim, R. W., On the Subordination and Super-Ordination Concepts with Applications, Journal of Computational and Theoretical Nanoscience, 14 (5) (2017), 2248-2254.
  • Gal, S. G., Ban, A. I., Elements of Fuzzy Mathematics, Editura Universitatii din Oradea, 1996. (in Romanian)
  • Miller, S. S., Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 298-305.
  • Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
  • Miller, S. S., Mocanu, P. T., Differential Subordinations. Theory and Applications, Marcel Dekker, Inc., New York, Basel, 2000.
  • Oros, G. I., Oros, Gh., The notion of subordination in fuzzy sets theory, General Mathematics, 19 (4) (2011), 97-103.
  • Oros, G. I., Oros, Gh., Fuzzy differential subordination, Acta Universitatis Apulensis, 3 (2012), 55-64.
  • Oros, G. I., Oros, Gh., Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2) (2012), 239-248.
  • Oros G.I., Briot-Bouquet fuzzy differential subordination, Analele Universitatii Oradea, Fasc. Mathematica, 19 (2) (2012), 83-97.
  • Oros, G. I., Oros, Gh., Diaconu R., Differential subordinations obtained with some new integral operators, J. Computational Analysis and Applications, 19 (5) (2015), 904-910.
  • Pommerenke Ch., Univalent Functions, Vanderhoeck and Ruprecht, Gottingen, 1975.
  • Wanas, A. K., Majeed, A. H., Fuzzy differential subordination properties of analytic functions involving generalized differential operator, Sci.Int.(Lahore), 30 (2) (2018), 297-302.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Georgia İ. Oros 0000-0003-2902-4455

Publication Date June 30, 2021
Submission Date August 22, 2020
Acceptance Date December 18, 2020
Published in Issue Year 2021

Cite

APA Oros, G. İ. (2021). New fuzzy differential subordinations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 229-240. https://doi.org/10.31801/cfsuasmas.784080
AMA Oros Gİ. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):229-240. doi:10.31801/cfsuasmas.784080
Chicago Oros, Georgia İ. “New Fuzzy Differential Subordinations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 229-40. https://doi.org/10.31801/cfsuasmas.784080.
EndNote Oros Gİ (June 1, 2021) New fuzzy differential subordinations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 229–240.
IEEE G. İ. Oros, “New fuzzy differential subordinations”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 229–240, 2021, doi: 10.31801/cfsuasmas.784080.
ISNAD Oros, Georgia İ. “New Fuzzy Differential Subordinations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 229-240. https://doi.org/10.31801/cfsuasmas.784080.
JAMA Oros Gİ. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:229–240.
MLA Oros, Georgia İ. “New Fuzzy Differential Subordinations”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 229-40, doi:10.31801/cfsuasmas.784080.
Vancouver Oros Gİ. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):229-40.

Cited By


















Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.