Research Article
BibTex RIS Cite

$ S $-$ \delta $-connectedness in $ S $-proximity spaces

Year 2021, , 600 - 611, 31.12.2021
https://doi.org/10.31801/cfsuasmas.792265

Abstract

New types of connectedness in $ S $-proximity spaces, named as an $ S $-$\delta$-connectedness, local $ S $-$ \delta $-connectedness are introduced. Also, their inter-relationships are studied. In an $ S $-proximity space $ (X, \delta_{X}) $, the $ S $-$ \delta $-connectedness of a subset $ U $ of $ X $ with respect to $ \delta_{X} $ may not be same as the $ S $-$ \delta $-connectedness of $ U $ with respect to its subspace proximity $ \delta_{U} $. Further, $ S $-$ \delta $-component and $ S $-$ \delta $-treelike spaces are also defined and a number of results are given.

Supporting Institution

University Grants Commission, India

References

  • Brouwer A.E., Treelike Spaces and Related Connected Topological Spaces, Mathematical Centre Tracts, Mathematisch centrum, 75, 1977.
  • Cech E., Topological spaces, Wiley London (1966) fr seminar, Brno, 1936-1939, rev. ed. Z. Frolik, M. Katetov.
  • Dimitrijevi´c R., Kocinac Lj., On connectedness of proximity spaces, Mat. Vesnik, 39(1) (1987), 27-35.
  • Dimitrijevi´c R., Kocinac Lj., On treelike proximity spaces, Mat. Vesnik, 39(3) (1987), 257-261.
  • Efremovic V.A., Infinitesimal spaces, Dokl. Akad. Nauk SSSR, 76 (1951), 341-343 (in Russian).
  • Efremovic V.A., The geometry of proximity I, Mat. Sb., 31 (1952), 189-200 (in Russian).
  • Krishna Murti S.B., A set of axioms for topological algebra, J. Indian Math. Soc., 4 (1940), 116-119.
  • Modak S., Noiri T., A weaker form of connectedness, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 65 (2016), 49-52.
  • Mrówka S. G. , W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc., 15 (1964), 446-449.
  • Naimpally S. , Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, München, 2009.
  • Naimpally S., Peters J., Topology with Applications; Topological Spaces Via Near and Far, World Scientific Publishing Co. Pte. Ltd., 2013.
  • Naimpally S., Warrack B.D., Proximity Spaces, Cambridge Univ. Press, 1970.
  • Reisz F., Stetigkeitsbegriff and abstrakte Mengelehre, Atti IV Congr. Intern. dei Mat. Roma, 2 (1908), 18-24.
  • Smirnov Y.M., On Completeness of Proximity Spaces I, Amer. Math. Soc. Trans., 38 (1964), 37-73.
  • Smirnov Y.M., On Proximity Spaces, Amer. Math. Soc. Trans., 38 (1964), 5-35.
  • Szymanski P., La notion des ensembles séparés comme terme primitif de la topologie, Math. Timisoara, 17 (1941), 65-84.
  • Wallace A.D., Separation spaces, Ann. Math., 42(3) (1941), 687-697.
  • Wallace A.D., Separation spaces II, Anais. Acad. Brasil Ciencias, 14 (1942), 203-206.
Year 2021, , 600 - 611, 31.12.2021
https://doi.org/10.31801/cfsuasmas.792265

Abstract

References

  • Brouwer A.E., Treelike Spaces and Related Connected Topological Spaces, Mathematical Centre Tracts, Mathematisch centrum, 75, 1977.
  • Cech E., Topological spaces, Wiley London (1966) fr seminar, Brno, 1936-1939, rev. ed. Z. Frolik, M. Katetov.
  • Dimitrijevi´c R., Kocinac Lj., On connectedness of proximity spaces, Mat. Vesnik, 39(1) (1987), 27-35.
  • Dimitrijevi´c R., Kocinac Lj., On treelike proximity spaces, Mat. Vesnik, 39(3) (1987), 257-261.
  • Efremovic V.A., Infinitesimal spaces, Dokl. Akad. Nauk SSSR, 76 (1951), 341-343 (in Russian).
  • Efremovic V.A., The geometry of proximity I, Mat. Sb., 31 (1952), 189-200 (in Russian).
  • Krishna Murti S.B., A set of axioms for topological algebra, J. Indian Math. Soc., 4 (1940), 116-119.
  • Modak S., Noiri T., A weaker form of connectedness, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 65 (2016), 49-52.
  • Mrówka S. G. , W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc., 15 (1964), 446-449.
  • Naimpally S. , Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, München, 2009.
  • Naimpally S., Peters J., Topology with Applications; Topological Spaces Via Near and Far, World Scientific Publishing Co. Pte. Ltd., 2013.
  • Naimpally S., Warrack B.D., Proximity Spaces, Cambridge Univ. Press, 1970.
  • Reisz F., Stetigkeitsbegriff and abstrakte Mengelehre, Atti IV Congr. Intern. dei Mat. Roma, 2 (1908), 18-24.
  • Smirnov Y.M., On Completeness of Proximity Spaces I, Amer. Math. Soc. Trans., 38 (1964), 37-73.
  • Smirnov Y.M., On Proximity Spaces, Amer. Math. Soc. Trans., 38 (1964), 5-35.
  • Szymanski P., La notion des ensembles séparés comme terme primitif de la topologie, Math. Timisoara, 17 (1941), 65-84.
  • Wallace A.D., Separation spaces, Ann. Math., 42(3) (1941), 687-697.
  • Wallace A.D., Separation spaces II, Anais. Acad. Brasil Ciencias, 14 (1942), 203-206.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Beenu Singh 0000-0003-0196-7670

Davinder Singh 0000-0002-1446-707X

Publication Date December 31, 2021
Submission Date September 8, 2020
Acceptance Date January 30, 2021
Published in Issue Year 2021

Cite

APA Singh, B., & Singh, D. (2021). $ S $-$ \delta $-connectedness in $ S $-proximity spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 600-611. https://doi.org/10.31801/cfsuasmas.792265
AMA Singh B, Singh D. $ S $-$ \delta $-connectedness in $ S $-proximity spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):600-611. doi:10.31801/cfsuasmas.792265
Chicago Singh, Beenu, and Davinder Singh. “$ S $-$ \delta $-Connectedness in $ S $-Proximity Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 600-611. https://doi.org/10.31801/cfsuasmas.792265.
EndNote Singh B, Singh D (December 1, 2021) $ S $-$ \delta $-connectedness in $ S $-proximity spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 600–611.
IEEE B. Singh and D. Singh, “$ S $-$ \delta $-connectedness in $ S $-proximity spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 600–611, 2021, doi: 10.31801/cfsuasmas.792265.
ISNAD Singh, Beenu - Singh, Davinder. “$ S $-$ \delta $-Connectedness in $ S $-Proximity Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 600-611. https://doi.org/10.31801/cfsuasmas.792265.
JAMA Singh B, Singh D. $ S $-$ \delta $-connectedness in $ S $-proximity spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:600–611.
MLA Singh, Beenu and Davinder Singh. “$ S $-$ \delta $-Connectedness in $ S $-Proximity Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 600-11, doi:10.31801/cfsuasmas.792265.
Vancouver Singh B, Singh D. $ S $-$ \delta $-connectedness in $ S $-proximity spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):600-11.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.