Araştırma Makalesi
BibTex RIS Kaynak Göster

On The Iterative Solutions of Delay Differential Equations

Yıl 2023, Cilt: 2 Sayı: 1, 44 - 55, 30.04.2024

Öz

Quantitative and qualitative details that are important for some problems modeled as differential or integral equations can be made more explicit through fixed point iteration methods. Iteration methods are used as an effective tool to include an equation whose solution is under investigation into a class of operators under certain conditions and to obtain the solution of the equation with the help of this operator. In this study, the convergence of a new four-step iteration method is proved and it is shown that since delay differential equations can be included in the class of contraction mappings under certain conditions, the sequence obtained from the reconstructed four-step iteration method with the help of these equations converges to the solution of these equations.

Kaynakça

  • Atalan, Y. and Karakaya, V., (2019). Investigation of some fixed point theorems in hyperbolic spaces for a three-step iteration process, Korean J. Math. 27, 929-947.
  • Banach, S., (1922). “Sur Les Opérations Dans Les Ensembles Abstraits et Leur Application Aux Equations Intégrales", Fundamenta Mathematicae, 3 (1): 133-181.
  • Berinde, V. (2007), Iterative Approximation of Fixed Points, Springer-Verlag, Berlin.
  • Chugh, R. Kumar, V. ve Kumar, S., (2012). Strong convergence of a new three step iterative scheme in Banach spaces, American Journal of Computational Mathematics, 2: 345-357.
  • Coman, G., Pavel, G., Rus, I. ve Rus, I., (1976). Introduction on the Theory of Operatorial Equations, Ed, Dacia, Cluj-Napoca.
  • Gündoğdu, E. (2023). Hiperbolik uzaylarda sabit nokta teorisi üzerine baz sonuçlar, (Yüksek Lisans Tezi, Aksaray Üniversitesi), Aksaray Üniversitesi Fen Bilimleri Enstitüsü.
  • Hardy, G.E. & Rogers, T., (1973). A generalization of a fixed point theorem of Reich, Canadian Mathematical Bulletin, 16 (2), 201-206.
  • Kannan, R. (1968). "Some Results on Fixed Points", Bulletin of the Calcutta Mathematical Society, 60 (1-2): 71-76.
  • Karahan, I. & Ozdemir, M., (2013). A general iterative method for approximation of fixed points and their applications, Advances in Fixed Point Theory, 3 (3): 510-526.
  • Karakaya, V., Atalan, Y., Doğan, K., Bouzara, NEH., (2016). Convergence analysis for a new faster iteration method, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 15(30), 35-53.
  • Khan, S.H. (2013). "A Picard-Mann Hybrid Iterative Process", Fixed point Theory and Applications, 2013 (69):
  • Maldar, S., Atalan, Y., Doğan, K., (2020). Comparison rate of convergence and data dependence for a new iteration method, Tbilisi Mathematical Journal 13(4), 65-79.
  • Nadler, S.B. (1969). "Multi-valued Contraction Mappings", Pacific Journal of Mathematics, 30 (2): 475-488.
  • Zamfirescu, T. (1972). "Fix Point Theorems in Metric Spaces", Archiv der Mathematik, 23 (1): 292-298.

Gecikmeli Diferansiyel Denklemlerin İteratif Çözümleri Üzerine

Yıl 2023, Cilt: 2 Sayı: 1, 44 - 55, 30.04.2024

Öz

Diferansiyel veya integral denklem şeklinde modellenen bazı problemler için önem arz eden nicel ve nitel ayrıntılar sabit nokta iterasyon yöntemleri aracılığıyla daha belirgin hale getirilebilir. Çözümü incelenen bir denklemi belirli şartlar altında bir operatör sınıfına dahil etmek ve bu operatör yardımıyla söz konusu denklemin çözümüne ulaşmak için iterasyon yöntemleri etkin bir araç olarak kullanılmaktadır. Bu çalışmada yeni dört adımlı bir iterasyon yönteminin yakınsaklığı ispatlanmış ve gecikmeli diferansiyel denklemler belirli şartları sağlamak kaydıyla daraltan dönüşüm sınıfına dahil edilebildiğinden bu denklemler yardımıyla yeniden inşa edilen dört adımlı iterasyon yönteminden elde edilen dizinin bu denklemlerin çözümüne yakınsadığı gösterilmiştir.

Kaynakça

  • Atalan, Y. and Karakaya, V., (2019). Investigation of some fixed point theorems in hyperbolic spaces for a three-step iteration process, Korean J. Math. 27, 929-947.
  • Banach, S., (1922). “Sur Les Opérations Dans Les Ensembles Abstraits et Leur Application Aux Equations Intégrales", Fundamenta Mathematicae, 3 (1): 133-181.
  • Berinde, V. (2007), Iterative Approximation of Fixed Points, Springer-Verlag, Berlin.
  • Chugh, R. Kumar, V. ve Kumar, S., (2012). Strong convergence of a new three step iterative scheme in Banach spaces, American Journal of Computational Mathematics, 2: 345-357.
  • Coman, G., Pavel, G., Rus, I. ve Rus, I., (1976). Introduction on the Theory of Operatorial Equations, Ed, Dacia, Cluj-Napoca.
  • Gündoğdu, E. (2023). Hiperbolik uzaylarda sabit nokta teorisi üzerine baz sonuçlar, (Yüksek Lisans Tezi, Aksaray Üniversitesi), Aksaray Üniversitesi Fen Bilimleri Enstitüsü.
  • Hardy, G.E. & Rogers, T., (1973). A generalization of a fixed point theorem of Reich, Canadian Mathematical Bulletin, 16 (2), 201-206.
  • Kannan, R. (1968). "Some Results on Fixed Points", Bulletin of the Calcutta Mathematical Society, 60 (1-2): 71-76.
  • Karahan, I. & Ozdemir, M., (2013). A general iterative method for approximation of fixed points and their applications, Advances in Fixed Point Theory, 3 (3): 510-526.
  • Karakaya, V., Atalan, Y., Doğan, K., Bouzara, NEH., (2016). Convergence analysis for a new faster iteration method, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 15(30), 35-53.
  • Khan, S.H. (2013). "A Picard-Mann Hybrid Iterative Process", Fixed point Theory and Applications, 2013 (69):
  • Maldar, S., Atalan, Y., Doğan, K., (2020). Comparison rate of convergence and data dependence for a new iteration method, Tbilisi Mathematical Journal 13(4), 65-79.
  • Nadler, S.B. (1969). "Multi-valued Contraction Mappings", Pacific Journal of Mathematics, 30 (2): 475-488.
  • Zamfirescu, T. (1972). "Fix Point Theorems in Metric Spaces", Archiv der Mathematik, 23 (1): 292-298.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Adi Diferansiyel Denklemler, Fark Denklemleri ve Dinamik Sistemler
Bölüm Araştırma Makalesi
Yazarlar

Yunus Atalan 0000-0002-5912-7087

Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 17 Ocak 2024
Kabul Tarihi 29 Mart 2024
Yayımlandığı Sayı Yıl 2023 Cilt: 2 Sayı: 1

Kaynak Göster

APA Atalan, Y. (2024). Gecikmeli Diferansiyel Denklemlerin İteratif Çözümleri Üzerine. Cihannüma Teknoloji Fen Ve Mühendislik Bilimleri Akademi Dergisi, 2(1), 44-55.