Review
BibTex RIS Cite

Interactions of Native and Denatured Whey Proteins with Caseins and Polysaccharides

Year 2020, Volume: 6 Issue: 1, 180 - 189, 22.05.2020
https://doi.org/10.28979/comufbed.622391

Abstract

In this review, interactions of native or denatured whey proteins with other proteins and polysaccharides were addressed. Chemical structures of whey proteins and caseins as representatives of proteins and of gum Arabic and dextran as representatives of polysaccharides were explained. Whey protein, as a mixture of different proteins, such as beta-lactoglobulin, alpha-lactalbumin, or bovine serum albumin, has a highly complex nature, and therefore, the main interaction occurs within these proteins upon processing. Structu-re of whey protein includes hydrogen bonds, disulfide bridges and free thiol group, all of which allows whey proteins highly reactive with other polymers. With these properties, whey proteins can be denatured via heating or acidification in a controlled way; and therefore, several functional particles with different sizes and shapes could be obtained. Here we explained the interactions of native and denatured whey proteins with caseins, gum Arabic and dextran in terms of their behaviuor in solutions or dispersions, their functional and rheological properties. Denaturation process includes mainly hydrophobic interacti-ons and is most of the time irreversible, whereas the complex formation of proteins with polysaccharides includes electrostatic and/or steric interactions and complex formation could be reversible or irreversible depending on the type of application. Such interactions are important for the stability of food materials especially during processing and storage, therefore, a deep insight on this subject is important.

References

  • van den Akker, C. C., Schleeger, M., Bonn, M., & Koenderink, G. H. (2014). Structural basis for the polymorphism of β-lactoglobulin amyloid-like fibrils (Chapter 31). Bio-nanoimaging, Protein Misfolding and Aggregation, 333-343.
  • Ako, K., Nicolai, T., Durand, D., & Brotons, G. (2009). Micro-phase separation explains the abrupt structural change of denatured globular protein gels on varying the ionic strength or the pH. Soft Matter, 5, 4033-4041.
  • Anema, S. G., & Li, Y. (2003). Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk. Journal of Agricultural and Food Chemistry, 51, 1640-1646.
  • Benichou, A., Aserin, A., & Garti, N. (2002). Protein-polysaccharide interactions for stabilization of food emulsions. Journal of Dispersion Science and Technology, 23, 93-123.
  • Carrasco, F., Chornet, E., Overend, R. P., & Costa, J. (1989). A generalized correlation for the viscosity of dextrans in aqueous solutions as a function of temperature, concentration, and molecular weight at low shear rates. Journal of Applied Polymer Science, 37, 2087-2098.
  • Clare, D. A., & Daubert, C. R. (2010). Transglutaminase catalysis of modified whey protein dispersions. Journal of Food Science, 75, 369-377.
  • Corredig, M., & Dalgleish, D. G. (1996). Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk. Food Research International, 29, 49-55.
  • Dai, Q., Zhu, X., Abbas, S., Karangwa, E., Zhang, X., Xia, S., Feng, B., & Jia, C. (2015). Stable nanoparticles prepared by heating electrostatic complexes of whey protein isolate-dextran conjugate and chondroitin sulfate. Journal of Agricultural and Food Chemistry, 63, 4179-4189.
  • Doublier, J. L., Garnier, C., Renard, D., & Sanchez, C., 2000. Protein-polysaccharide interactions. Current Opinion in Colloid & Interface Science, 5, 202-214.
  • Elzoghby, A. O., Elgohary, M. M., & Kamel, N. M. (2015). Implications of protein- and peptide-based nanoparticles as potential vehicles for anticancer drugs (Chapter 6). Advances in Protein Chemistry and Structural Biology, 98, 169-221.
  • Ge, S., Kojio, K., Takahara, A., & Kajiyama, T. (1998). Bovine serum albumin adsorption onto immobilized organotrichlorosilane surface: influence of the phase separation on protein adsorption patterns. Journal of Biomaterials Science, Polymer Edition, 9, 131–50.
  • Ghosh, A. K., & Bandyopadhyay, P. (2012). Polysaccharide-protein interactions and their relevance in food colloids. In D. N. Karunaratne (Ed.), The Complex World of Polysaccharides (pp. 395-408).
  • Gulao, E. S., Souza, C. J. F., Andrade, C. T., & Garcia-Rojas, E. E. (2016). Complex coacervates obtained from peptide leucine and gum Arabic: Formation and characterization. Food Chemistry, 194, 680-686.
  • Hoffmann, M. A., & van Mill, P. J. J. M. (1999). Heat-induced aggregation of β-lactoglobulin as function of pH. Journal of Agricultural and Food Chemistry, 47, 1898-1905. Horne, D. S. (2006). Casein micelle structure: Models and muddles. Current Opinion in Colloid & Interface Science, 11, 148-153.
  • Ince Coskun, A. E., Saglam, D., Venema, P., van der Linden, E., & Scholten, E. (2015). Preparation, structure and stability of sodium caseinate and gelatin micro-particles. Food Hydrocolloids, 45, 291-300.
  • Kelly, P., Woonton, B. W., & Smithers, G. W. (2009). Improving the sensory quality, shelf-life and functionality of milk (Chapter 8). Functional and Speciality Beverage Technology, Woodhead Publishing Series in Food Science, Technology and Nutrition, 170-231.
  • Klein, M., Aserin, A., Ishai, P. B., & Garti, N. (2010). Interactions between whey protein isolate and gum arabic. Colloids and Surfaces B: Biointerfaces, 79, 377-383.
  • de Kruif, C. G. (2012). Milk nanotubes: technology and potential applications (Chapter 14). Nanotechnology in the Food, Beverage and Nutraceutical Industries, Woodhead Publishing Series in Food Science, Technology and Nutrition, 398-412.
  • Lam, C. W. Y., & Ikeda, S. (2017). Physical properties of heat-induced whey protein aggregates formed at pH 5.5 and 7.0. Food Science and Technology Research, 23, 595-601.
  • Langerdorff, V., Cuvelier, G., Launay, B., Michin, C., Parker, A., & Kruif, C. G. (1999). Casein micelle/iota carrageenan interactions in milk: Influence of temperature. Food Hydrocolloids, 13, 211-218.
  • Lazidis, A., Hancocks, R. D., Spyropoulos, F., Kreuß, M., Berrocal, R., & Norton, I. T. (2016). Whey protein fluid gels for the stabilisation of foams. Food Hydrocolloids, 53, 209-217.
  • Lee, W. J., & Lucey, J. A. (2010). Formation and physical properties of yogurt. Asian-Australian Journal of Animal Science, 23, 1127-1136.
  • Loveday, S. M., Ye, A., Anema, S. G., & Singh, H. (2013). Heat-induced colloidal interactions of whey proteins, sodium caseinate and gum arabic in binary and ternary mixtures. Food Research International, 54, 111-117.
  • Lu, K. W., Pérez-Gil, J., & Taeusch, H. W. (2009). Kinematic viscosity of therapeutic pulmonary surfactants with added polymers. Biochimica et Biophysica Acta, 1788, 632-637.
  • Mahmoudi, N., Axelos, M. A. V., & Riaublanc, A. (2011). Interfacial properties of fractal and spherical whey protein aggregates. Soft Matter, 7, 7643-7654.
  • Mehalebi, S., Nicolai, T., & Durand, D. (2008). Light scattering study of heat- denatured globular protein aggregates. International Journal of Biological Macromolecules, 43, 129-135.
  • Nicolai, T., Britten, M., & Schmitt, C. (2011). -lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 25, 1945-1962.
  • Nivala, O., Mäkinen, O. E., Kruus, K., Nordlund, E., & Ercili-Cura, D. (2017). Structuring colloidal oat and faba bean protein particles via enzymatic modification. Food Chemistry, 231, 87-95.
  • Pelegrine, D. H. G., & Gasparetto, C. A. (2005). Whey proteins solubility as a function of temperature. LWT-Research note, 38, 77-80.
  • Peng, J., Kroes-Nijboer, A., Venema, P., & van der Linden, E. (2016). Stability of colloidal dispersions in the presence of protein fibrils. Soft Matter, 12, 3514-3526.
  • Phan-Xuan, T., Durand, D., & Nicolai, T. (2013). Tuning the structure of protein particles and gels with calcium or sodium ions. Biomacromolecules, 14, 1980-1989.
  • Roefs, S. P. F. M., & de Kruif, C. G. (1994). A model for the denaturation and aggregation of β-lactoglobulin. European Journal of Biochemistry, 226, 883-889.
  • Rogers, S. S., Venema, P., Sagis, L. M. C., van der Linden, E., & Donald, A. M. (2005). Measuring length distribution of a fibril system: A flow birefringence technique applied to amyloid fibrils. Macromolecules, 38, 2948-2958.
  • Ruis, H. G. M., van Gruijthuijsen, K., Venema, P., & van der Linden, E. (2007). Transitions in structure in o/w emulsions as studied by diffusing wave spectroscopy. Langmuir, 23, 1007-1013.
  • Sağlam, D., Venema, P., de Vries, R., Sagis, L. M. C., & van der Linden, E. (2011). Preparation of high protein micro-particles using two-step emulsification. Food Hydrocolloids, 25, 1139-1148.
  • Sağlam, D., Venema, P., de Vries, R., van Aelst, A., & van der Linden, E. (2012). Relation between gelation conditions and the physical properties of whey protein particles. Langmuir, 28, 6551‐6560.
  • Sağlam, D., Venema, P., de Vries, R., Shi, J., & van der Linden, E. (2013). Concentrated whey protein particle dispersions: Heat stability and rheological properties. Food Hydrocolloids, 30, 100‐109.
  • Serfert, Y., Lamprecht, C., Tan, C. P., Keppler, J. K., Appel, E., Rossier-Miranda, F. J., Schroen, K., Boom, R. M., Gorb, S., Selhuber-Unkel, C., Drusch, S., & Schwarz, K. (2014). Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof. Journal of Food Engineering, 143, 53-61.
  • Singhal, R. S., Gupta, A. K., & Kulkarni, P. R. (1991). Low-calorie fat substitute. Trends in Food Science and Technology, 2, 241-244.
  • Sneharani, A. H., Karakkat, J. V., Singh, S. A., & Rao, A. G. A. (2010). Interaction of curcumin with β-lactoglobulin-Stability, spectroscopic analysis, and molecular modeling of the complex. Journal of Agricultural and Food Chemistry, 58, 11130-11139.
  • Spotti, M. J., Perduca, M. J., Piagentini, A., Santiago, L. G., Rubiolo, A. C., & Carrara, C. R. (2013). Gel mechanical properties of milk whey protein-dextran conjugates obtained by Maillard reaction. Food Hydrocolloids, 31, 26-32.
  • Spotti, M. J., Martinez, M. J., Pilosof, A. M. R., Candioti, M., Rubiolo, A. C., & Carrara, C. R. (2014). Rheological properties of whey protein and dextran conjugates at different reaction times. Food Hydrocolloids, 38, 76-84.
  • Stagg, L., Zhang, S. Q., Cheung, M. S., & Wittung-Stafshede, P. (2007). Molecular crowding enhances native structure and stability of / protein flavodoxin. Proceedings of the National Academy of Sciences, 104, 18976-18981.
  • Sun, W., Yu, S., Yang, X., Wang, J., Zhang, J., & Zhang, Y. (2011). Study on the rheological properties of heat-induced whey protein isolate-dextran conjugate gel. Food Research International, 44, 3259-3263.
  • Thorn, D. C., Meehan, S., Sunde, M., Rekas, A., Gras, S. L., MacPhee, C. E., Dobson, C. M., Wilson, M. R., Carver, J. A., & MacPhee, C. (2005). Amyloid fibril formation by bovine milk kappa-casein and its inhibition by the molecular chaperones alpha(s-) and beta-casein. Biochemistry, 44, 17027-17036.
  • Turan, D., Gibis, M., Gunes, G., Baier, S. K., & Weiss, J. (2018). The impact of the molecular weight of dextran on formation of whey protein isolate (WPI)-dextran conjugates in fibers produced by needleless electrospinning after annealing. Food&Function, 9, 2193-2200.
  • Wang, W., Zhong, Q., & Hu, Z. (2013). Nanoscale understanding of thermal aggregation of whey protein pretreated by transglutaminase. Journal of Agricultural and Food Chemistry, 61, 435-446.
  • Weinbreck, F., Tromp, R. H., & de Kruif, C. G. (2004a). Composition and structure of whey protein/gum arabic coacervates. Biomacromolecules, 5, 1437-1445.
  • Weinbreck, F., Minor, M., & de Kruif, C. G. (2004b). Microencapsulation of oils using whey protein/gum Arabic coacervates. Journal of Microencapsulation, 21, 667-679.
  • Yadav, M. P., Igartuburu, J. M., Yan, Y., & Nothnagel, E. A. (2007). Chemical investigation of the structural basis of the emulsifying activity of gum arabic. Food Hydrocolloids, 21, 297-308.
  • Zhang, W., & Zhong, Q. (2009). Microemulsions as nanoreactors to produce whey protein nanoparticles with enhanced heat stability by sequential enzymatic cross-linking and thermal pretreatment. Journal of Agricultural and Food Chemistry, 57, 9181-9189.
  • Zhu, J., He, H., & Li, S. (2008a). Macromolecular crowding enhances thermal stability of rabbit muscle creatine kinase. Tsinghua Science and Technology, 13, 454-459.
  • Zhu, D., Damodaran, S., & Lucey, J. A. (2008b). Formation of whey protein isolate (WPI)-dextran conjugates in aqueous solutions. Journal of Agricultural and Food Chemistry, 56, 7113-7118.
  • Zhu, D., Damodaran, S., & Lucey, J. A. (2010). Physicochemical and emulsifying properties of whey protein isolate (WPI)-dextran conjugates produced in aqueous solutions. Journal of Agricultural and Food Chemistry, 58, 2988-2994.

Interactions of Native and Denatured Whey Proteins with Caseins and Polysaccharides

Year 2020, Volume: 6 Issue: 1, 180 - 189, 22.05.2020
https://doi.org/10.28979/comufbed.622391

Abstract

In this review, interactions of native or denatured whey proteins with other proteins and polysaccharides were addressed. Chemical structures of whey proteins and caseins as representatives of proteins and of gum Arabic and dextran as representatives of polysaccharides were explained. Whey protein, as a mixture of different proteins, such as beta-lactoglobulin, alpha-lactalbumin, or bovine serum albumin, has a highly complex nature, and therefore, the main interaction occurs within these proteins upon processing. Structu-re of whey protein includes hydrogen bonds, disulfide bridges and free thiol group, all of which allows whey proteins highly reactive with other polymers. With these properties, whey proteins can be denatured via heating or acidification in a controlled way; and therefore, several functional particles with different sizes and shapes could be obtained. Here we explained the interactions of native and denatured whey proteins with caseins, gum Arabic and dextran in terms of their behaviuor in solutions or dispersions, their functional and rheological properties. Denaturation process includes mainly hydrophobic interacti-ons and is most of the time irreversible, whereas the complex formation of proteins with polysaccharides includes electrostatic and/or steric interactions and complex formation could be reversible or irreversible depending on the type of application. Such interactions are important for the stability of food materials especially during processing and storage, therefore, a deep insight on this subject is important.

References

  • van den Akker, C. C., Schleeger, M., Bonn, M., & Koenderink, G. H. (2014). Structural basis for the polymorphism of β-lactoglobulin amyloid-like fibrils (Chapter 31). Bio-nanoimaging, Protein Misfolding and Aggregation, 333-343.
  • Ako, K., Nicolai, T., Durand, D., & Brotons, G. (2009). Micro-phase separation explains the abrupt structural change of denatured globular protein gels on varying the ionic strength or the pH. Soft Matter, 5, 4033-4041.
  • Anema, S. G., & Li, Y. (2003). Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk. Journal of Agricultural and Food Chemistry, 51, 1640-1646.
  • Benichou, A., Aserin, A., & Garti, N. (2002). Protein-polysaccharide interactions for stabilization of food emulsions. Journal of Dispersion Science and Technology, 23, 93-123.
  • Carrasco, F., Chornet, E., Overend, R. P., & Costa, J. (1989). A generalized correlation for the viscosity of dextrans in aqueous solutions as a function of temperature, concentration, and molecular weight at low shear rates. Journal of Applied Polymer Science, 37, 2087-2098.
  • Clare, D. A., & Daubert, C. R. (2010). Transglutaminase catalysis of modified whey protein dispersions. Journal of Food Science, 75, 369-377.
  • Corredig, M., & Dalgleish, D. G. (1996). Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk. Food Research International, 29, 49-55.
  • Dai, Q., Zhu, X., Abbas, S., Karangwa, E., Zhang, X., Xia, S., Feng, B., & Jia, C. (2015). Stable nanoparticles prepared by heating electrostatic complexes of whey protein isolate-dextran conjugate and chondroitin sulfate. Journal of Agricultural and Food Chemistry, 63, 4179-4189.
  • Doublier, J. L., Garnier, C., Renard, D., & Sanchez, C., 2000. Protein-polysaccharide interactions. Current Opinion in Colloid & Interface Science, 5, 202-214.
  • Elzoghby, A. O., Elgohary, M. M., & Kamel, N. M. (2015). Implications of protein- and peptide-based nanoparticles as potential vehicles for anticancer drugs (Chapter 6). Advances in Protein Chemistry and Structural Biology, 98, 169-221.
  • Ge, S., Kojio, K., Takahara, A., & Kajiyama, T. (1998). Bovine serum albumin adsorption onto immobilized organotrichlorosilane surface: influence of the phase separation on protein adsorption patterns. Journal of Biomaterials Science, Polymer Edition, 9, 131–50.
  • Ghosh, A. K., & Bandyopadhyay, P. (2012). Polysaccharide-protein interactions and their relevance in food colloids. In D. N. Karunaratne (Ed.), The Complex World of Polysaccharides (pp. 395-408).
  • Gulao, E. S., Souza, C. J. F., Andrade, C. T., & Garcia-Rojas, E. E. (2016). Complex coacervates obtained from peptide leucine and gum Arabic: Formation and characterization. Food Chemistry, 194, 680-686.
  • Hoffmann, M. A., & van Mill, P. J. J. M. (1999). Heat-induced aggregation of β-lactoglobulin as function of pH. Journal of Agricultural and Food Chemistry, 47, 1898-1905. Horne, D. S. (2006). Casein micelle structure: Models and muddles. Current Opinion in Colloid & Interface Science, 11, 148-153.
  • Ince Coskun, A. E., Saglam, D., Venema, P., van der Linden, E., & Scholten, E. (2015). Preparation, structure and stability of sodium caseinate and gelatin micro-particles. Food Hydrocolloids, 45, 291-300.
  • Kelly, P., Woonton, B. W., & Smithers, G. W. (2009). Improving the sensory quality, shelf-life and functionality of milk (Chapter 8). Functional and Speciality Beverage Technology, Woodhead Publishing Series in Food Science, Technology and Nutrition, 170-231.
  • Klein, M., Aserin, A., Ishai, P. B., & Garti, N. (2010). Interactions between whey protein isolate and gum arabic. Colloids and Surfaces B: Biointerfaces, 79, 377-383.
  • de Kruif, C. G. (2012). Milk nanotubes: technology and potential applications (Chapter 14). Nanotechnology in the Food, Beverage and Nutraceutical Industries, Woodhead Publishing Series in Food Science, Technology and Nutrition, 398-412.
  • Lam, C. W. Y., & Ikeda, S. (2017). Physical properties of heat-induced whey protein aggregates formed at pH 5.5 and 7.0. Food Science and Technology Research, 23, 595-601.
  • Langerdorff, V., Cuvelier, G., Launay, B., Michin, C., Parker, A., & Kruif, C. G. (1999). Casein micelle/iota carrageenan interactions in milk: Influence of temperature. Food Hydrocolloids, 13, 211-218.
  • Lazidis, A., Hancocks, R. D., Spyropoulos, F., Kreuß, M., Berrocal, R., & Norton, I. T. (2016). Whey protein fluid gels for the stabilisation of foams. Food Hydrocolloids, 53, 209-217.
  • Lee, W. J., & Lucey, J. A. (2010). Formation and physical properties of yogurt. Asian-Australian Journal of Animal Science, 23, 1127-1136.
  • Loveday, S. M., Ye, A., Anema, S. G., & Singh, H. (2013). Heat-induced colloidal interactions of whey proteins, sodium caseinate and gum arabic in binary and ternary mixtures. Food Research International, 54, 111-117.
  • Lu, K. W., Pérez-Gil, J., & Taeusch, H. W. (2009). Kinematic viscosity of therapeutic pulmonary surfactants with added polymers. Biochimica et Biophysica Acta, 1788, 632-637.
  • Mahmoudi, N., Axelos, M. A. V., & Riaublanc, A. (2011). Interfacial properties of fractal and spherical whey protein aggregates. Soft Matter, 7, 7643-7654.
  • Mehalebi, S., Nicolai, T., & Durand, D. (2008). Light scattering study of heat- denatured globular protein aggregates. International Journal of Biological Macromolecules, 43, 129-135.
  • Nicolai, T., Britten, M., & Schmitt, C. (2011). -lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 25, 1945-1962.
  • Nivala, O., Mäkinen, O. E., Kruus, K., Nordlund, E., & Ercili-Cura, D. (2017). Structuring colloidal oat and faba bean protein particles via enzymatic modification. Food Chemistry, 231, 87-95.
  • Pelegrine, D. H. G., & Gasparetto, C. A. (2005). Whey proteins solubility as a function of temperature. LWT-Research note, 38, 77-80.
  • Peng, J., Kroes-Nijboer, A., Venema, P., & van der Linden, E. (2016). Stability of colloidal dispersions in the presence of protein fibrils. Soft Matter, 12, 3514-3526.
  • Phan-Xuan, T., Durand, D., & Nicolai, T. (2013). Tuning the structure of protein particles and gels with calcium or sodium ions. Biomacromolecules, 14, 1980-1989.
  • Roefs, S. P. F. M., & de Kruif, C. G. (1994). A model for the denaturation and aggregation of β-lactoglobulin. European Journal of Biochemistry, 226, 883-889.
  • Rogers, S. S., Venema, P., Sagis, L. M. C., van der Linden, E., & Donald, A. M. (2005). Measuring length distribution of a fibril system: A flow birefringence technique applied to amyloid fibrils. Macromolecules, 38, 2948-2958.
  • Ruis, H. G. M., van Gruijthuijsen, K., Venema, P., & van der Linden, E. (2007). Transitions in structure in o/w emulsions as studied by diffusing wave spectroscopy. Langmuir, 23, 1007-1013.
  • Sağlam, D., Venema, P., de Vries, R., Sagis, L. M. C., & van der Linden, E. (2011). Preparation of high protein micro-particles using two-step emulsification. Food Hydrocolloids, 25, 1139-1148.
  • Sağlam, D., Venema, P., de Vries, R., van Aelst, A., & van der Linden, E. (2012). Relation between gelation conditions and the physical properties of whey protein particles. Langmuir, 28, 6551‐6560.
  • Sağlam, D., Venema, P., de Vries, R., Shi, J., & van der Linden, E. (2013). Concentrated whey protein particle dispersions: Heat stability and rheological properties. Food Hydrocolloids, 30, 100‐109.
  • Serfert, Y., Lamprecht, C., Tan, C. P., Keppler, J. K., Appel, E., Rossier-Miranda, F. J., Schroen, K., Boom, R. M., Gorb, S., Selhuber-Unkel, C., Drusch, S., & Schwarz, K. (2014). Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof. Journal of Food Engineering, 143, 53-61.
  • Singhal, R. S., Gupta, A. K., & Kulkarni, P. R. (1991). Low-calorie fat substitute. Trends in Food Science and Technology, 2, 241-244.
  • Sneharani, A. H., Karakkat, J. V., Singh, S. A., & Rao, A. G. A. (2010). Interaction of curcumin with β-lactoglobulin-Stability, spectroscopic analysis, and molecular modeling of the complex. Journal of Agricultural and Food Chemistry, 58, 11130-11139.
  • Spotti, M. J., Perduca, M. J., Piagentini, A., Santiago, L. G., Rubiolo, A. C., & Carrara, C. R. (2013). Gel mechanical properties of milk whey protein-dextran conjugates obtained by Maillard reaction. Food Hydrocolloids, 31, 26-32.
  • Spotti, M. J., Martinez, M. J., Pilosof, A. M. R., Candioti, M., Rubiolo, A. C., & Carrara, C. R. (2014). Rheological properties of whey protein and dextran conjugates at different reaction times. Food Hydrocolloids, 38, 76-84.
  • Stagg, L., Zhang, S. Q., Cheung, M. S., & Wittung-Stafshede, P. (2007). Molecular crowding enhances native structure and stability of / protein flavodoxin. Proceedings of the National Academy of Sciences, 104, 18976-18981.
  • Sun, W., Yu, S., Yang, X., Wang, J., Zhang, J., & Zhang, Y. (2011). Study on the rheological properties of heat-induced whey protein isolate-dextran conjugate gel. Food Research International, 44, 3259-3263.
  • Thorn, D. C., Meehan, S., Sunde, M., Rekas, A., Gras, S. L., MacPhee, C. E., Dobson, C. M., Wilson, M. R., Carver, J. A., & MacPhee, C. (2005). Amyloid fibril formation by bovine milk kappa-casein and its inhibition by the molecular chaperones alpha(s-) and beta-casein. Biochemistry, 44, 17027-17036.
  • Turan, D., Gibis, M., Gunes, G., Baier, S. K., & Weiss, J. (2018). The impact of the molecular weight of dextran on formation of whey protein isolate (WPI)-dextran conjugates in fibers produced by needleless electrospinning after annealing. Food&Function, 9, 2193-2200.
  • Wang, W., Zhong, Q., & Hu, Z. (2013). Nanoscale understanding of thermal aggregation of whey protein pretreated by transglutaminase. Journal of Agricultural and Food Chemistry, 61, 435-446.
  • Weinbreck, F., Tromp, R. H., & de Kruif, C. G. (2004a). Composition and structure of whey protein/gum arabic coacervates. Biomacromolecules, 5, 1437-1445.
  • Weinbreck, F., Minor, M., & de Kruif, C. G. (2004b). Microencapsulation of oils using whey protein/gum Arabic coacervates. Journal of Microencapsulation, 21, 667-679.
  • Yadav, M. P., Igartuburu, J. M., Yan, Y., & Nothnagel, E. A. (2007). Chemical investigation of the structural basis of the emulsifying activity of gum arabic. Food Hydrocolloids, 21, 297-308.
  • Zhang, W., & Zhong, Q. (2009). Microemulsions as nanoreactors to produce whey protein nanoparticles with enhanced heat stability by sequential enzymatic cross-linking and thermal pretreatment. Journal of Agricultural and Food Chemistry, 57, 9181-9189.
  • Zhu, J., He, H., & Li, S. (2008a). Macromolecular crowding enhances thermal stability of rabbit muscle creatine kinase. Tsinghua Science and Technology, 13, 454-459.
  • Zhu, D., Damodaran, S., & Lucey, J. A. (2008b). Formation of whey protein isolate (WPI)-dextran conjugates in aqueous solutions. Journal of Agricultural and Food Chemistry, 56, 7113-7118.
  • Zhu, D., Damodaran, S., & Lucey, J. A. (2010). Physicochemical and emulsifying properties of whey protein isolate (WPI)-dextran conjugates produced in aqueous solutions. Journal of Agricultural and Food Chemistry, 58, 2988-2994.
There are 54 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Derleme Makale
Authors

Alev Emine İnce Coşkun 0000-0002-8952-4913

Semih Ötleş 0000-0003-4571-8764

Publication Date May 22, 2020
Acceptance Date December 16, 2019
Published in Issue Year 2020 Volume: 6 Issue: 1

Cite

APA İnce Coşkun, A. E., & Ötleş, S. (2020). Interactions of Native and Denatured Whey Proteins with Caseins and Polysaccharides. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 180-189. https://doi.org/10.28979/comufbed.622391
AMA İnce Coşkun AE, Ötleş S. Interactions of Native and Denatured Whey Proteins with Caseins and Polysaccharides. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. May 2020;6(1):180-189. doi:10.28979/comufbed.622391
Chicago İnce Coşkun, Alev Emine, and Semih Ötleş. “Interactions of Native and Denatured Whey Proteins With Caseins and Polysaccharides”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 1 (May 2020): 180-89. https://doi.org/10.28979/comufbed.622391.
EndNote İnce Coşkun AE, Ötleş S (May 1, 2020) Interactions of Native and Denatured Whey Proteins with Caseins and Polysaccharides. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 1 180–189.
IEEE A. E. İnce Coşkun and S. Ötleş, “Interactions of Native and Denatured Whey Proteins with Caseins and Polysaccharides”, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 1, pp. 180–189, 2020, doi: 10.28979/comufbed.622391.
ISNAD İnce Coşkun, Alev Emine - Ötleş, Semih. “Interactions of Native and Denatured Whey Proteins With Caseins and Polysaccharides”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/1 (May 2020), 180-189. https://doi.org/10.28979/comufbed.622391.
JAMA İnce Coşkun AE, Ötleş S. Interactions of Native and Denatured Whey Proteins with Caseins and Polysaccharides. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020;6:180–189.
MLA İnce Coşkun, Alev Emine and Semih Ötleş. “Interactions of Native and Denatured Whey Proteins With Caseins and Polysaccharides”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 1, 2020, pp. 180-9, doi:10.28979/comufbed.622391.
Vancouver İnce Coşkun AE, Ötleş S. Interactions of Native and Denatured Whey Proteins with Caseins and Polysaccharides. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020;6(1):180-9.

 14421         download