Araştırma Makalesi
BibTex RIS Kaynak Göster

Alternatif Veri Elde Yöntemi Web Madenciliği: Otel Oda Fiyatlarının Zamansal Analizi

Yıl 2021, Cilt: 19 Sayı: 42, 1013 - 1034, 22.10.2021
https://doi.org/10.35408/comuybd.861715

Öz

Otel oda fiyatları çeşitli faktörlere bağlı olarak sezon içerisinde değişkenlik göstermektedir. Fiyatlar sezon dışına yakın oldukları dönemde düşük olurken, yüksek sezon olarak nitelendirilen dönemde daha yüksek olmaktadır. Fiyatlardaki zamansal bu değişimi detaylı olarak incelemek, gerekli verinin elde edilmesinin zorluğu nedeniyle çoğu zaman mümkün olmamaktadır. Bu çalışma alternatif bir veri elde etme yöntemi kullanarak otel oda fiyatlarının zamansal değişimlerini belirlemeyi amaçlamaktadır.

Veri elde etmenin üstesinden gelmek için web madenciliği olarak adlandırılan alternatif bir yöntem kullanılmıştır. Bu amaçla, geliştirilen bir web madenciliği algoritması ile, bir tatil/konaklama arama motorundan Türkiye’nin Ege Bölgesinde bulunan toplam 675 kıyı otelinin 15 online seyahat acentesine ait 184 günlük fiyat verisi elde edilmiştir. Bu veri, oda fiyatlarının zamansal değişimini belirlemek için kullanılmıştır.

Analiz sonucunda ortalama oda fiyatları, aylara göre anlamlı farklılık gösterdiği görülmektedir (χ2=164,58; p<0,05). Fiyatların en yüksek olduğu ay Ağustos ayıdır. Fiyatlar haftalık olarak analiz edildiğinde de anlamlı farklılık göstermiştir (χ2=144,43; p<0,05). Buna göre sıralama ortalama değerleri en yüksek 31, 32, 33 ve 34. haftada görülmektedir. Bu dönem 30.07.2018-26.08.2018 aralığıdır. Fiyatlar hafta sonu ve hafta içi olarak anlamlı bir farklılık göstermemiştir (U = 3243, p>0.05). Resmî tatil olan dini bayramlarda ortalama oda fiyatlarında gözle görülür yükselişlerin olduğu tespit edilmiştir.

Bu araştırma ile, gerek veriyi elde etmede web madenciliğinin kullanılması gerekse otel oda fiyatlarının 675 oteli içine alan tam bir bölgeyi kapsayacak biçimde yapılmasının yazına katkı sağlayacağı umut edilmektedir.

Kaynakça

  • Ağca, Y. (2019). Çevrimiçi Seyahat Acentelerinde Oda Fiyatlarına Etki Eden Faktörlerin Araştırılması (Yayınlanmamış Doktora Tezi). Atatürk Üniversitesi, Sosyal Bilimler Enstitüsü, Erzurum.
  • Ağca, Y., Aksoy, H., & Özdemir, A. (2018). Web Madenciliği Yönteminin Geçmiş Gündemi Bulmak İçin Kullanımı: Türkiye’deki Turizm Gündemi Örneği. The Journal of Social Science, 30(30), 344-358. doi:http://dx.doi.org/10.16990/SOBIDER.4562
  • Baumol, W. J., & Blinder, A. S. (2016). Economics: Principles and Policy (13 b.). Boston, US: Cengage Learning.
  • Box, G. E., Jenkins, G. M., & Reinsel, G. C. (2008). Time Series Analysis: Forecasting and Control (4 b.). Hoboken, US.: John Wiley & Sons, Inc.
  • Bull, A. O. (1994). Pricing A Motel's Location. International Journal of Contemporary Hospitality Management, 6(6), 10-15.
  • Carvell, S. A., & Herrin, W. E. (1990). Pricing in the Hospitality Industry: An Implicit Market Approach. Hospitality Review, 27-37. http://scholarship.sha.cornell.edu/articles/194/ adresinden alındı
  • Coenders, G., Espinet, J. M., & Saez, M. (2003). Predicting Random Level and Seasonality of Hotel Prices: A Latent Growth Curve Approach. Tourism Analysis, 8, 1-17.
  • Dwyer, L., Forsyth, P., & Dwyer, W. (2010). Tourism Economics and Policy. Bristol, UK: Channel View Publications.
  • Erden, C. (2020, 05 06). Zaman Serisi Tahminleri ve ARIMA Modelleri. Canererden.com: http://canererden.com/2020/05/06/zaman-serisi-tahminleri-ve-arima-modelleri adresinden alındı
  • Field, A. (2009). Discovering Statistics Using SPSS (3 b.). London: SAGE Publications Ltd.
  • Frechtling, D. (2011). Forecasting Tourism Demand: Methods and Strategies. New York, US: Routledge.
  • George, D., & Mallery, P. (2010). SPSS for Windows step by step : a simple guide and reference, 17.0 update (10 b.). Boston: Allyn & Bacon.
  • Goeldner, C. R., & Ritchie, R. B. (2006). Tourism; Principles, Practices,Philosophies (10 b.). New Jersey: John Wiley & Sons, Inc.
  • Gorunescu, F. (2011). Data Mining: Concepts, Models and Techniques (Cilt 12). Berlin: Springer-Verlag. doi:10.1007/978-3-642-19721-5
  • Gupta, G. (2004). Macroeconomics: Theory and Applications (2 b.). New Delhi: Tata McGraw-Hill Publishing.
  • Holloway, J. C., & Taylor, N. (2006). The Business of Tourism (7 b.). Harlow: Financial Times Prentice Hall.
  • Kara, O. (2020, 02 03). ARIMA ile Bitcoin Fiyat Tahmini. Medium.com: https://medium.com/icrypex/arima-ile-bitcoin-fiyat-tahmini-510dd7a94d97 adresinden alındı
  • Karyopouli, S., & Koutra, C. (2013). Mature Coastal Mediterranean Destinations: Mitigating Seasonality. C. Costa, E. Panyik, & D. Buhalis (Dü) içinde, Trends in European Tourism Planning and Organisation. Ontario, Canada: Channel View Publications.
  • Keskinkılıç, M., Ağca, Y., & Karaman, E. (2016). İnternet ve Bilgi Sistemleri Kullanımının Turizm Dağıtım Kanallarına Etkisi Üzerine Bir Uygulama. İşletme Araştırmaları Dergisi, 8(4), 445-472. doi:10.20491/isarder.2016.227
  • Koushik, D., Higbie, J. A., & Eister, C. (2011). Retail Price Optimization at InterContinental Hotels Group. Interfaces, 42(1), 45-57. http://www.jstor.org/stable/41472728 adresinden alındı
  • Krishna, V. B., Iyer, R. K., & Sanders, W. H. (2015). ARIMA-Based Modeling and Validation of Consumption Readings in Power Grids. E. Rome, M. Theocharidou, & S. Wolthusen (Dü.), 10th International Conference, CRITIS 2015 içinde (s. 199-210). Berlin, Germany: Springer. https://link.springer.com/book/10.1007/978-3-319-33331-1 adresinden alındı
  • Lim, C., & Chan, F. (2011). An econometric analysis of hotel and motel room nights in New Zealand with stochastic seasonality. International Journal of Revenue Management, 5(1), 63-83.
  • Maklin, C. (2019, 05 25). ARIMA Model Python Example — Time Series Forecasting. Towards Data Science: https://towardsdatascience.com/machine-learning-part-19-time-series-and-autoregressive-integrated-moving-average-model-arima-c1005347b0d7 adresinden alındı
  • Memarzadeh, F., Blum, S. C., & Adams, C. (2015). The impact of positive and negative e-comments on business travelers’ intention to purchase a hotel room. Journal of Hospitality and Tourism Technology, 6(3), 258-270. doi:10.1108/JHTT-09-2014-0049
  • Nau, R. (2020). Statistical forecasting: notes on regression and time series analysis. duke.edu: https://people.duke.edu/~rnau/411arim.htm adresinden alındı
  • Nikolopoulos, K. I., & Thomakos, D. D. (2019). Forecasting With The Theta Method: Theory and Applications. Hoboken, US: Wiley.
  • (2018). OECD Tourism Trends and Policies. Paris, France: OECD Publishing.
  • Papatheodorou, A. (2002). Exploring Competitiveness in Mediterranean Resorts. Tourism Economics, 8(2), 133-150.
  • Pawlicz, A., & Napierala, T. (2017). The Determinants of Hotel Room Rates: An Analysis of The Hotel Industry in Warsaw, Poland. International Journal of Contemporary Hospitality Management, 29(1), 571-588.
  • Prabhakaran, S. (2020). ARIMA Model – Complete Guide to Time Series Forecasting in Python. machinelearningplus.com: https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/ adresinden alındı
  • Raya, J. M. (2010). The effect of time on hotel pricing strategy. Applied Economics Letters, 1-5. doi:10.1080/13504851.2010.532091
  • Saló, A., Garriga, A., Rigall-I-Torrent, R., Vila, M., & Sayeras, J. M. (2012). Differences in seasonal price patterns among second home rentals and hotels: empirical evidence and practical implications. Tourism Economics, 18(4), 731-747. doi:10.5367/te.2012.0141
  • Sharma, A. (2019, 06 24). Moving Averages in Pandas. Data Camp: https://www.datacamp.com/community/tutorials/moving-averages-in-pandas adresinden alındı
  • Taylor, P. (1995). Measuring Changes in the Relative Competitiveness of Package Tour Destinations. Tourism Economics, 1(2), 169-182.
  • Thrane, C. (2005). Hedonic Price Models and Sun-and-Beach Package Tours: The Norwegian Case. Journal of Travel Research, 43(3), 302-308. https://search.proquest.com/docview/217444429?accountid=15959 adresinden alındı
  • Tribe, J. (2016). The Economics of Recreation, Leisure and Tourism (5 b.). New York, US: Routledge, Taylor & Francis Group.
  • Upton, G. (1999, 05 17). A Seasonal Opportunity: BUSINESS TRAVEL HOTEL BARGAINS: If You Go Away In Summer There Are Good Rates To Be Found, Says Gillian Upton: [London Edition]. Financial Times. 04 07, 2018 tarihinde https://search.proquest.com/docview/248682242?accountid=15959 adresinden alındı
  • Valipour, M., Ebrahim Banihabib, M., & Behbahani, S. M. (2013). Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of Hydrology, 476, 433-441. doi:https://doi.org/10.1016/j.jhydrol.2012.11.017
  • Wang, X., Sun, J., & Wen, H. (2019). Tourism seasonality, online user rating and hotel price: A quantitative approach based on the hedonic price model. International Journal of Hospitality Management, 79, 140-147.
  • Weiermair, K., Pechlaner, H., & Bieger, T. (Dü). (2006). Time Shift, Leisure and Tourism: Impacts of Time Allocation on Successful Products and Services. Berlin, Germany: Erich Schmidt Verlag GmbH.

ALTERNATIVE DATA COLLECTION METHOD WEB MINING: SEASONAL ANALYSIS OF HOTEL ROOM RATES

Yıl 2021, Cilt: 19 Sayı: 42, 1013 - 1034, 22.10.2021
https://doi.org/10.35408/comuybd.861715

Öz

Hotel room prices vary during the season depending on various factors. While prices are low when they are close to the ends of the season, it is higher in the period described as peak period. It is often not possible to examine this change in prices in detail due to the difficulty of obtaining the necessary data. This study aims to determine changes of hotel room prices using an alternative data collecting method.

An alternative method called web mining has been used to overcome the data collecting. For this purpose, a web-mining algorithm was used for collecting data that is on a travel search engine. The room prices given by 15 travel agencies of the 675 hotels in the Aegean region coast of Turkey were collected by this algorithm. These 184 days of data was used to analyze room prices.

As a result of the analysis, it is seen that average room prices differ significantly by months (χ2=164,58; p<0,05). Prices are the highest in August. Prices also differed significantly when analyzed weekly (χ2=144,43; p<0,05). Accordingly, the ranking average values are highest at 31, 32, 33 and 34 weeks. This period is between 30.07.2018-26.08.2018. Prices did not differ significantly on weekends and weekdays (U = 3243, p>0.05). It has been determined that there are noticeable increases in average room prices during religious holidays, which are official holidays in Turkey.

In this study, both the use of web mining to collecting data and the hotel room prices covering 675 hotels, it is hoped that will contribute to the literature.

Kaynakça

  • Ağca, Y. (2019). Çevrimiçi Seyahat Acentelerinde Oda Fiyatlarına Etki Eden Faktörlerin Araştırılması (Yayınlanmamış Doktora Tezi). Atatürk Üniversitesi, Sosyal Bilimler Enstitüsü, Erzurum.
  • Ağca, Y., Aksoy, H., & Özdemir, A. (2018). Web Madenciliği Yönteminin Geçmiş Gündemi Bulmak İçin Kullanımı: Türkiye’deki Turizm Gündemi Örneği. The Journal of Social Science, 30(30), 344-358. doi:http://dx.doi.org/10.16990/SOBIDER.4562
  • Baumol, W. J., & Blinder, A. S. (2016). Economics: Principles and Policy (13 b.). Boston, US: Cengage Learning.
  • Box, G. E., Jenkins, G. M., & Reinsel, G. C. (2008). Time Series Analysis: Forecasting and Control (4 b.). Hoboken, US.: John Wiley & Sons, Inc.
  • Bull, A. O. (1994). Pricing A Motel's Location. International Journal of Contemporary Hospitality Management, 6(6), 10-15.
  • Carvell, S. A., & Herrin, W. E. (1990). Pricing in the Hospitality Industry: An Implicit Market Approach. Hospitality Review, 27-37. http://scholarship.sha.cornell.edu/articles/194/ adresinden alındı
  • Coenders, G., Espinet, J. M., & Saez, M. (2003). Predicting Random Level and Seasonality of Hotel Prices: A Latent Growth Curve Approach. Tourism Analysis, 8, 1-17.
  • Dwyer, L., Forsyth, P., & Dwyer, W. (2010). Tourism Economics and Policy. Bristol, UK: Channel View Publications.
  • Erden, C. (2020, 05 06). Zaman Serisi Tahminleri ve ARIMA Modelleri. Canererden.com: http://canererden.com/2020/05/06/zaman-serisi-tahminleri-ve-arima-modelleri adresinden alındı
  • Field, A. (2009). Discovering Statistics Using SPSS (3 b.). London: SAGE Publications Ltd.
  • Frechtling, D. (2011). Forecasting Tourism Demand: Methods and Strategies. New York, US: Routledge.
  • George, D., & Mallery, P. (2010). SPSS for Windows step by step : a simple guide and reference, 17.0 update (10 b.). Boston: Allyn & Bacon.
  • Goeldner, C. R., & Ritchie, R. B. (2006). Tourism; Principles, Practices,Philosophies (10 b.). New Jersey: John Wiley & Sons, Inc.
  • Gorunescu, F. (2011). Data Mining: Concepts, Models and Techniques (Cilt 12). Berlin: Springer-Verlag. doi:10.1007/978-3-642-19721-5
  • Gupta, G. (2004). Macroeconomics: Theory and Applications (2 b.). New Delhi: Tata McGraw-Hill Publishing.
  • Holloway, J. C., & Taylor, N. (2006). The Business of Tourism (7 b.). Harlow: Financial Times Prentice Hall.
  • Kara, O. (2020, 02 03). ARIMA ile Bitcoin Fiyat Tahmini. Medium.com: https://medium.com/icrypex/arima-ile-bitcoin-fiyat-tahmini-510dd7a94d97 adresinden alındı
  • Karyopouli, S., & Koutra, C. (2013). Mature Coastal Mediterranean Destinations: Mitigating Seasonality. C. Costa, E. Panyik, & D. Buhalis (Dü) içinde, Trends in European Tourism Planning and Organisation. Ontario, Canada: Channel View Publications.
  • Keskinkılıç, M., Ağca, Y., & Karaman, E. (2016). İnternet ve Bilgi Sistemleri Kullanımının Turizm Dağıtım Kanallarına Etkisi Üzerine Bir Uygulama. İşletme Araştırmaları Dergisi, 8(4), 445-472. doi:10.20491/isarder.2016.227
  • Koushik, D., Higbie, J. A., & Eister, C. (2011). Retail Price Optimization at InterContinental Hotels Group. Interfaces, 42(1), 45-57. http://www.jstor.org/stable/41472728 adresinden alındı
  • Krishna, V. B., Iyer, R. K., & Sanders, W. H. (2015). ARIMA-Based Modeling and Validation of Consumption Readings in Power Grids. E. Rome, M. Theocharidou, & S. Wolthusen (Dü.), 10th International Conference, CRITIS 2015 içinde (s. 199-210). Berlin, Germany: Springer. https://link.springer.com/book/10.1007/978-3-319-33331-1 adresinden alındı
  • Lim, C., & Chan, F. (2011). An econometric analysis of hotel and motel room nights in New Zealand with stochastic seasonality. International Journal of Revenue Management, 5(1), 63-83.
  • Maklin, C. (2019, 05 25). ARIMA Model Python Example — Time Series Forecasting. Towards Data Science: https://towardsdatascience.com/machine-learning-part-19-time-series-and-autoregressive-integrated-moving-average-model-arima-c1005347b0d7 adresinden alındı
  • Memarzadeh, F., Blum, S. C., & Adams, C. (2015). The impact of positive and negative e-comments on business travelers’ intention to purchase a hotel room. Journal of Hospitality and Tourism Technology, 6(3), 258-270. doi:10.1108/JHTT-09-2014-0049
  • Nau, R. (2020). Statistical forecasting: notes on regression and time series analysis. duke.edu: https://people.duke.edu/~rnau/411arim.htm adresinden alındı
  • Nikolopoulos, K. I., & Thomakos, D. D. (2019). Forecasting With The Theta Method: Theory and Applications. Hoboken, US: Wiley.
  • (2018). OECD Tourism Trends and Policies. Paris, France: OECD Publishing.
  • Papatheodorou, A. (2002). Exploring Competitiveness in Mediterranean Resorts. Tourism Economics, 8(2), 133-150.
  • Pawlicz, A., & Napierala, T. (2017). The Determinants of Hotel Room Rates: An Analysis of The Hotel Industry in Warsaw, Poland. International Journal of Contemporary Hospitality Management, 29(1), 571-588.
  • Prabhakaran, S. (2020). ARIMA Model – Complete Guide to Time Series Forecasting in Python. machinelearningplus.com: https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/ adresinden alındı
  • Raya, J. M. (2010). The effect of time on hotel pricing strategy. Applied Economics Letters, 1-5. doi:10.1080/13504851.2010.532091
  • Saló, A., Garriga, A., Rigall-I-Torrent, R., Vila, M., & Sayeras, J. M. (2012). Differences in seasonal price patterns among second home rentals and hotels: empirical evidence and practical implications. Tourism Economics, 18(4), 731-747. doi:10.5367/te.2012.0141
  • Sharma, A. (2019, 06 24). Moving Averages in Pandas. Data Camp: https://www.datacamp.com/community/tutorials/moving-averages-in-pandas adresinden alındı
  • Taylor, P. (1995). Measuring Changes in the Relative Competitiveness of Package Tour Destinations. Tourism Economics, 1(2), 169-182.
  • Thrane, C. (2005). Hedonic Price Models and Sun-and-Beach Package Tours: The Norwegian Case. Journal of Travel Research, 43(3), 302-308. https://search.proquest.com/docview/217444429?accountid=15959 adresinden alındı
  • Tribe, J. (2016). The Economics of Recreation, Leisure and Tourism (5 b.). New York, US: Routledge, Taylor & Francis Group.
  • Upton, G. (1999, 05 17). A Seasonal Opportunity: BUSINESS TRAVEL HOTEL BARGAINS: If You Go Away In Summer There Are Good Rates To Be Found, Says Gillian Upton: [London Edition]. Financial Times. 04 07, 2018 tarihinde https://search.proquest.com/docview/248682242?accountid=15959 adresinden alındı
  • Valipour, M., Ebrahim Banihabib, M., & Behbahani, S. M. (2013). Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of Hydrology, 476, 433-441. doi:https://doi.org/10.1016/j.jhydrol.2012.11.017
  • Wang, X., Sun, J., & Wen, H. (2019). Tourism seasonality, online user rating and hotel price: A quantitative approach based on the hedonic price model. International Journal of Hospitality Management, 79, 140-147.
  • Weiermair, K., Pechlaner, H., & Bieger, T. (Dü). (2006). Time Shift, Leisure and Tourism: Impacts of Time Allocation on Successful Products and Services. Berlin, Germany: Erich Schmidt Verlag GmbH.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Yılmaz Ağca 0000-0002-5912-0977

Yayımlanma Tarihi 22 Ekim 2021
Gönderilme Tarihi 15 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 19 Sayı: 42

Kaynak Göster

APA Ağca, Y. (2021). Alternatif Veri Elde Yöntemi Web Madenciliği: Otel Oda Fiyatlarının Zamansal Analizi. Yönetim Bilimleri Dergisi, 19(42), 1013-1034. https://doi.org/10.35408/comuybd.861715

Sayın Araştırmacı;

Dergimize gelen yoğun talep nedeniyle Ekim 2024 sayısı için öngörülen kontenjan dolmuştur, gönderilen makaleler ilerleyen sayılarda değerlendirilebilecektir. Bu hususa dikkat ederek yeni makale gönderimi yapmanızı rica ederiz.

Yönetim Bilimler Dergisi Özel Sayı Çağrısı
Yönetim Bilimleri Dergisi 2024 yılının Eylül ayında “Endüstri 4.0 ve Dijitalleşmenin Sosyal Bilimlerde Yansımaları” başlıklı bir özel sayı yayınlayacaktır.
Çanakkale Onsekiz Mart Üniversitesi Biga İktisadi ve İdari Bilimler Fakültesi tarafından 5-6 Temmuz 2024 tarihlerinde çevrimiçi olarak düzenlenecek olan 4. Uluslararası Sosyal Bilimler Konferansı’nda sunum gerçekleştiren yazarların dergi için ücret yatırmasına gerek olmayıp, dekont yerine Konferans Katılım Belgesini sisteme yüklemeleri yeterli olacaktır.
Gönderilen makalelerin derginin yazım kurallarına uygun olması ve DergiPark sistemi üzerinden sisteme yüklenmesi gerekmektedir. Özel sayı ana başlığı ile ilgisiz makaleler değerlendirmeye alınmayacaktır. Özel sayı için gönderilen makalelerin "Makalemi özel sayıya göndermek istiyorum" kutucuğu işaretlenerek sisteme yüklenmesi gerekmektedir. Özel sayı için gönderilmemiş makalelerin bu sayıya eklenmesi mümkün olmayacaktır.
Özel Sayı Çalışma Takvimi
Gönderim Başlangıcı: 15 Nisan 2024
Son Gönderim Tarihi: 15 Temmuz 2024
Özel Sayı Yayınlanma Tarihi: Eylül 2024

Dergimize göndereceğiniz çalışmalar linkte yer alan taslak dikkate alınarak hazırlanmalıdır. Çalışmanızı aktaracağınız taslak dergi yazım kurallarına göre düzenlenmiştir. Bu yüzden biçimlendirmeyi ve ana başlıkları değiştirmeden çalışmanızı bu taslağa aktarmanız gerekmektedir.
İngilizce Makale Şablonu için tıklayınız...

Saygılarımızla,