Conference Paper
BibTex RIS Cite

A New Modular Space Derived by Euler Totient Function

Year 2019, Volume: 2 Issue: 1, 90 - 93, 30.10.2019

Abstract

In this study, we introduce the Euler Totient sequence spaces  in generalized Orlicz space and  we examine some topological properties of these spaces by using the Luxemburg norm.

References

  • [1] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
  • [2] J. Musielak, Orlicz Spaces and Modular Space, New York, Springer Verlag, 1983.
  • [3] I. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
  • [4] E. Kovac, On $\phi$ convergence and $\phi$ density, Math. Slovaca 55 (2005), 329-351.
  • [5] I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the theory of numbers, (5th edition), Wiley, New York, 1991.
  • [6] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
  • [7] H. Haryadi, S. Supama, A. Zulijanto, A generalization of Cesaro sequence spaces in the Orlicz space, J. Phys. Conf. Ser. 1008 (2018), 012020.
Year 2019, Volume: 2 Issue: 1, 90 - 93, 30.10.2019

Abstract

References

  • [1] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
  • [2] J. Musielak, Orlicz Spaces and Modular Space, New York, Springer Verlag, 1983.
  • [3] I. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
  • [4] E. Kovac, On $\phi$ convergence and $\phi$ density, Math. Slovaca 55 (2005), 329-351.
  • [5] I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the theory of numbers, (5th edition), Wiley, New York, 1991.
  • [6] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
  • [7] H. Haryadi, S. Supama, A. Zulijanto, A generalization of Cesaro sequence spaces in the Orlicz space, J. Phys. Conf. Ser. 1008 (2018), 012020.
There are 7 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Merve İlkhan 0000-0002-0831-1474

Emrah Evren Kara 0000-0002-6398-4065

Fuat Usta 0000-0002-7750-6910

Publication Date October 30, 2019
Acceptance Date September 18, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA İlkhan, M., Kara, E. E., & Usta, F. (2019). A New Modular Space Derived by Euler Totient Function. Conference Proceedings of Science and Technology, 2(1), 90-93.
AMA İlkhan M, Kara EE, Usta F. A New Modular Space Derived by Euler Totient Function. Conference Proceedings of Science and Technology. October 2019;2(1):90-93.
Chicago İlkhan, Merve, Emrah Evren Kara, and Fuat Usta. “A New Modular Space Derived by Euler Totient Function”. Conference Proceedings of Science and Technology 2, no. 1 (October 2019): 90-93.
EndNote İlkhan M, Kara EE, Usta F (October 1, 2019) A New Modular Space Derived by Euler Totient Function. Conference Proceedings of Science and Technology 2 1 90–93.
IEEE M. İlkhan, E. E. Kara, and F. Usta, “A New Modular Space Derived by Euler Totient Function”, Conference Proceedings of Science and Technology, vol. 2, no. 1, pp. 90–93, 2019.
ISNAD İlkhan, Merve et al. “A New Modular Space Derived by Euler Totient Function”. Conference Proceedings of Science and Technology 2/1 (October 2019), 90-93.
JAMA İlkhan M, Kara EE, Usta F. A New Modular Space Derived by Euler Totient Function. Conference Proceedings of Science and Technology. 2019;2:90–93.
MLA İlkhan, Merve et al. “A New Modular Space Derived by Euler Totient Function”. Conference Proceedings of Science and Technology, vol. 2, no. 1, 2019, pp. 90-93.
Vancouver İlkhan M, Kara EE, Usta F. A New Modular Space Derived by Euler Totient Function. Conference Proceedings of Science and Technology. 2019;2(1):90-3.