BibTex RIS Cite

CUFEJ VOL: 43 NO: 2 ALL ARTICLES

Year 2014, Volume: 43 Issue: 2, 1 - 234, 30.09.2014

Abstract

CUFEJ VOL: 43 NO: 2 ALL ARTICLES

References

  • Akar, F. (2006). The efffectiveness of the discovery learning strategy on the mathematics achievement at the second step elementary. Unpublished master’s thesis, Çukurova University, The Institute of Social Sciences, Adana, Turkey.
  • Altun, M. (2002). Maths teaching in 6th,, 7th and 8th classes, (2nd ed.). Bursa: Alfa Publishing.
  • Başar,M., Ünal, M. &Yalçın, M. (2001). The reasons of the maths fear starting from the primary school. the congress of v. science and maths education. Retrieved August 10, 2007, from http://www.fedu.metu.edu.tr/ufbmek-5/b_kitabi/PDF/Matematik/Bildiri/t212d.pdf
  • Cooper, B. & Harries, T. (2002). Children’s responses to contrasting ‘realistic’ mathematics problems: Just how realistic are children ready to be mathematics. Educational Studies in Mathematics, 49, 1- 23.
  • De Bock, D., Van Dooren,W., Janssens, D. & Verschaffel, L. (2002). Improper use of linear reasoning: An in-depth study of the nature and the irresistibility of secondary school students’ errors. Educational Studies in Mathematics, 50, 311–334.
  • Depaepe, F., De Corte, E. & Verschaffel, L. (2010). Teachers’ approaches towards word problem solving: Elaborating or restricting the problem context. Teaching and Teacher Education, 26, 152-160.
  • Dursun, Ş. & Dede, Y. (2004). The factors affecting students’ success in mathematics: Mathematics teachers’ perspectives. Gazi University, The Journal of the Education Faculty, 24(2), 217–230.
  • Erden, M. (1986). Primary school 1st, 2nd, 3rd, 4th, and 5th graders’ behaviours when solving problems based on four operations. Hacettepe University, The Journal of the Education Faculty, 1, 105–113.
  • Ersoy, Y. & Gür, H. (2004). Maths teaching based on problem setting and solving approach – 1: Teachers’ experiences and some problems. The board of mathematicians: The science corner. Retrieved July 17, 2007, from http://www.matder.org.tr/bilim/hgyepk.asp?ID=82
  • Gainsburg, J. (2008). Real-worlds connections in secondary mathematics classrooms. Journal of Mathematics Teacher Education, 11, 199-219.
  • Greer, B. (1997). Modelling reality in mathematics classrooms: The case of word problems. Learning and Instruction, 7(4), 293–307.
  • Gür, H. & Korkmaz, E. (2003). The identification of primary school 7th graders’ problem development skills. The board of mathematicians: The science corner. Retrieved August 15, 2007, from http://www.matder.org.tr/bilim/i7sopoabb.asp?ID=38
  • Inoue, N. (2005). The realistic reasons behind unrealistic solutions: the role of interpretive activity in word problem solving. Learning and Instruction, 15, 69-83.
  • Inoue, N. (2002). The role of personal interpretation in mathematical problem solving. Columbia University.
  • National Council of Teachers of Mathematics. (2000). Principles and Standards for school mathematics, national council of teachers of mathematics. Reston, VA.
  • Reusser, K. & Stebler, R. (1997). Every word problem has a solution – the social rationality of mathematical modeling in schools. Learning and Instruction, 7, 309-327.
  • Sevgen, B. (2002). The structure and the development of mathematical thought. The proceedings of v. national science and maths teaching congress ulusal fen bilimler. Retrieved August 10, 2007, from http://www.fedu.metu.edu.tr/ufbmek-5/b_kitabi/PDF/Matematik/Bildiri/t250DD.pdf
  • Soylu, Y. & Soylu, C. (2006). The importance of problem solving in the way of achievement in maths classes. İnönü University, The Journal of the Education Faculty, 7(11), 97–111.
  • Verschaffel, L., De Corte, E. & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, (4), 273-294.
  • Verschaffel, L., Greer, B. & De Corte, E. (2000). Making sense of word problems. Lise: Swets and Zeitlinger.
  • Verschaffel, L., De Corte, E., & Viersraete H. (1999). Upper elementary school pupils’ difficulties in modeling and solving nonstandard additive word problems involving numbers. Journal for Research in Mathematics Education, 3(30), 265-285.
  • Umay, A. (2007). The new face of our old friend (1st ed.). Ankara: Aydan WEB Foundations.
  • Umay, A. (2003). The ability of mathematical reasoning. Hacettepe University, The Journal of the Education Faculty, 24, 234-243.
  • Xin, Z. & Zhang, L. (2009). Cognitive holding power, fluid intelligence, and mathematical achievement as predictors of children’s realistic problem solving. Learning and Individual Differences, 19, 124-129.
  • Yazgan, Y. & Bintaş, J. (2005). Fourth and fifth grade students’ level of problem solving strategies: A teaching experiment. Hacettepe University, the Journal of the Education Faculty, 28, 210-218.
  • Yoshida, H., Vershaffel, L. & De Corte, E. (1997). Realistic considerations in solving problematic word problems: Do Japanese and Belgian children have the same difficulties? Learning And Instruction, 7, 329-338.
  • Altunışık, R., Coşkun, R., Bayraktaroğlu, S. & Yıldırım, E. (2004). Sosyal bilimlerde arastırma yöntemleri. Sakarya: Sakarya Kitapevi.
  • An, S., Kulm, G., & Wu, Z. (2004). The pedagogical content knowledge of middle school, mathematics teachers in China and the US. Journal of Mathematics Teacher Education, 7 (2), 145–172.
  • Aslan-Tutak, F. (2011). Öğretmen adaylarının geometrik kavram yanılgıları: simetri ve eslik. Matematik Öğretimine Çağdaş Yaklaşımlar Sempozyumu, Çalıştaylar ve Bildiri Özetleri Kitabı, 27. Denizli.
  • Babbington, S. & Lomas, G. (2004). Enhancing mathematical content knowledge in new zealand early childhood education. The International Congress of Mathematics Education. Copenhagen, Denmark. Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi. Ankara: Harf Egitim Yayıncılık.
  • Ball D., L, Lubienski S.,T. & Mewborn D., S. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In Richardson V (Ed.), Handbook of research on teaching (pp. 433–456) 4th edn. New York: Macmillian.
  • Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. Elementary School Journal, 90 (4), 449-466.
  • Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 83–104). Westport, CT: Ablex.
  • Ball, D. L., & McDiarmid, G. W. (1988). Research on teacher learning: Studying how teachers’ knowledge changes. Action in Teacher Education, 10 (2), 17-24.
  • Ball, D. L., & McDiarmid, G. W. (1990). The subject matter preparation of teachers. In W. R. Houston (Ed.), Handbook of research on teacher education: A project of the Association of Teachers (pp. 437- 449). New York: MacMillan.
  • Ball, D.L. (1988a). Unlearning to teach mathematics. For the Learning of Mathematics, 8 (1), 40–48.
  • Ball, D.L. (1988b). The subject matter preparation of prospective mathematics teachers: Challenging the myths. (Research Report 88-3. East Lansing, MI: National Center for Research on Teacher Education). Retrieved January 3, 2013,from http://ncrtl.msu.edu/http/rreports/html/pdf/rr883.pdf
  • Barrantes, M. & Blanco, L., J. (2006). A study of prospective primary teachers’ conceptions of teaching and learning school geometry. Journal of Mathematics Teacher Education, 9, 411-436.
  • Baturo, A., & Nason, R. (1996). Student teachers’ subject matter knowledge within the domain of area measurement. Educational Studies in Mathematics, 31, 235-268.
  • Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van hiele levels of development in geometry. Journal For Research in Mathematics Education, 17 (1), 31-48.
  • Bütün, M. (2005). A study on primary mathematics teachers’ pedagogical content knowledge. Unpublished master’s thesis, Karadeniz Teknik University, Trabzon.
  • Carpenter, T., Fennema, E., Peterson, P., Chiang, C., & Loef, M. (1989). Using knowledge of children’s mathematics thinking in classroom teaching: An experimental study. American Educational Research Journal, 26 (4), 499-531.
  • Chinnappan, M., Nason, R., & Lawson, M. (1996). Pre-service teachers’ pedagogical and content knowledge about trigonometry and geometry: An initial investigation. In P. C. Clarkson (Ed), Proceedings of the 19th Annual Conference of the Mathematics Education Research Group of Australasia. Melbourne, MERGA.
  • Clements, D. H. (1998). Geometric and spatial thinking in young children. Arlington, VA: National Science Foundation.
  • Clements, D. H. (1999). Geometric and spatial thinking in young children. In J. V. Copley (Ed.), Mathematics in the early years (pp. 66–79). Reston, VA: National Council of Teachers of Mathematics.
  • Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowing: an integrative model for teacher preparation. Journal of Teacher Education 44(4), 263–272.
  • Cunningham, F. & Roberts, A. (2010). Reducing the mismatch of geometry concept definitions and concept images held by pre-service teachers. IUMPS The Journal, 1, 1-17.
  • Currie, P., & Pegg, J. (1998). Investigating students' understanding of the relationships among quadrilaterals. In C. Kanes, M. Goos, & E. Warren. (Eds.), Teaching Mathematics in New Times: Conference Proceedings. Melbourne: Mathematics Education Research Group of Australasia Incorporated.
  • De Villiers, M., (1996). The future of secondary school geometry. Slightly adapted version of Plenary technology course]. Unpublished master’s thesis, Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir, Turkey.
  • Baysen, E. (2006). Öğretmenlerin sınıfta sordukları sorular ile öğrencilerin bu sorulara verdikleri cevapların düzeyleri [The levels of teacher questıons and student answers], Kastamonu Eğitim Dergisi. 14(1), 21-28.
  • Berberoğlu, G., Arıkan, S., Demirtaşlı, N., İş Güzel, Ç., & Özgen Tuncer, Ç. (2009). İlköğretim 1.-5. sınıflar arasındaki öğretim programlarının kapsam ve öğrenme çıktıları açısından değerlendirilmesi. Cito Eğitim: Kuram ve Uygulama, 1, 10-48.
  • Brotherton, P.N., & Preece, P.F.W. (1996). Teaching science process skills. International Journal of Science Education, 18, 65-74.
  • Coil, D., Wenderoth, M. P., Cunningham, M., & Dirks, C. (2010). Teaching the process of science: Faculty perceptions and an effective methodology. CBE—Life Sciences Education, 9, 524–535.
  • Department for Education Science (DfES) (2004). Science: The National Curriculum for England. London: DfEE. Retrieved 10/01/2012, from www.qca.org.uk/nc/
  • Dirks, C. & Cunningham, M. (2006). Enhancing diversity in science: Is teaching science process skills the answer? CBE—Life Sciences Education, 5 (3), 218–226.
  • ERG (Eğitim Reformu Girişimi) (2011). Education monitoring report 2010: Execute summary 2010, Istanbul, Turkey. Retrieved 10/01/2012, from http://erg.sabanciuniv.edu/sites/erg.sabanciuniv. edu/files/EIR_2010_Exe_Sum.pdf
  • Fraenkel, J. R. & Wallen, N. E. (2006). How to design and evaluate research in education. (6th ed.) New York: McGraw-Hill.
  • Germann, P. J. & Aram, R. J. (1996). Student performances on the science processes of recording data, analyzing data, drawing conclusions, and providing evidence. Journal of Research in Science Teaching, 33(7), 773-798.
  • Güneş, B. (Ed.). (2008). İlkoğretim 7. sınıf fen ve teknoloji ders kitabı [7th grade science and technology textbook].MEB Devlet Kitapları, Ankara: İmpress.
  • Hackling, M.W. (2005). Working Scientifically: Implementing and Assessing Open Investigation Work is Science. A resources book for teachers of primary and secondary science. Department of Education and Training, Western Australia. Retrieved 10/01/2012, from http://www.angelfire.com/sc/staws /Working_Scientifically.pdf
  • Klahr, D. & Chen, Z. (2003). Overcoming the positive-capture strategy in young children: learning about Akay, H. (2006). Problem kurma yaklaşımı ile yapılan matematik öğretiminin öğrencilerin akademik başarısı, problem çözme becerisi ve yaratıcılığı üzerindeki etkisinin incelenmesi. Unpublished doctoral dissertation, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Akkan, Y., Çakıroğlu, Ü. ve Güven, B. (2009). İlköğretim 6. ve 7. Sınıf öğrencilerinin denklem oluşturma ve problem kurma yeterlilikleri. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 9 (17), 41-55. Baykul, Y. (1999). İlköğretimde matematik öğretimi. Ankara: Milli Eğitim Bakanlığı Yayınları.
  • Brown, S.I. & Walter, M. I. (1990). The art of problem posing. New Jersey: Lawrence Erlbaum Associates, Inc., Publishers.
  • Çakmak, M. (2005). İlköğretimde etkili matematik öğretimi ve öğretmen rolleri. In A. Altun ve S. Olkun, (Eds.), Güncel gelişmeler ışığında ilköğretim: matematik-fen-teknoloji-yönetim. (pp. 37-57). Ankara: Anı Yayıncılık.
  • Demir, B. B. (2005). The effect of instruction with problem posing on tenth grade students’ probability achievement and attitudes toward probability. Unpublished master’s thesis, Middle Esast Technical University, Ankara.
  • English, L. D. & Halford, G. S. (1995). Mathematics education models and processes. USA: Lawrence Erlbaum Associates.
  • Erbaş, A. K. (2005). Çoklu gösterimlerle problem çözme ve teknolojinin rolü. The Turkish Online Journal of Educational Technology, 4 (4), 88-92.
  • Fidan, S. (2008). İlköğretim 5. sınıf matematik dersinde öğrencilerin problem kurma çalışmalarının problem çözme başarısına etkisi. Unpublished master’s thesis, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Grundmeier, T. A. (2003). The effects of providing mathematical problem posing experiences for K-8 pre- service teachers: investigating teachers’ beliefs’ and characteristics of posed problems. Unpublished doctoral dissertation, University of New Hampshire, USA.
  • Gündüz, Ş. ve Odabaşı, F. (2004). Bilgi çağında öğretmen adaylarının eğitiminde öğretim teknolojileri ve materyal geliştirme dersinin önemi. TOJET, 3 (1), 43-48.
  • Gür, H. ve Korkmaz, E. (2003). İlköğretim 7. Sınıf öğrencilerinin problem ortaya atma becerilerinin belirlenmesi. Matematikçiler Derneği Matematik Köşesi Makaleleri. Retrieved January 13, 2010, from http://www.matder.org.tr
  • Güven, M. ve Kürüm, D. (2008). Öğretmen adaylarının öğrenme stilleri ile eleştirel düşünme eğilimleri arasındaki ilişki (Anadolu Üniversitesi Eğitim Fakültesi öğrencileri üzerinde bir araştırma). İlköğretim Online, 7 (1), 53-70.
  • Kilpatrick, J. (1987). Where do good problems come from?. In A. H. Schoenfeld, (Ed), Cognitive science and mathematics education, (pp. 123-148). USA: Lawrence Erlbaum Associates, Inc., Publishers.
  • Kojima, K., Miwa, K. & Matsui, T. (2009). Study on support of learning from examples in problem posing as
  • http://www.apsce.net/ICCE2009/pdf/C1/proceedings075-082.pdf task. Retrieved August 12, 2010,
  • from Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysis. Thousand Oaks, CA: Sage Publications. Olkun, S. (2003). Öğrencilere hacim formülü ne zaman anlamlı gelir?. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 25, 160-165.
  • Olkun, S. (2008). Matematik eğitiminde beceriler. In A. Özdaş, (Ed), Matematik, fen ve teknoloji öğretimi (pp. 31- 48). Eskişehir: Anadolu Üniversitesi Açıköğretim Fakültesi Yayınları.
  • Olkun, S. ve Toluk, Z. (2003). İlköğretimde etkinlik temelli matematik öğretimi. Ankara: Anı Yayıncılık.
  • Özer, B. (1998). Öğrenmeyi öğretme. In A. Hakan, (Ed.), Eğitim bilimlerinde yenilikler (pp. 147 - 164). Eskişehir: Anadolu Üniversitesi Açıköğretim Fakültesi Yayınları.
  • Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM, 29 (3), 75-80.
  • Silver, E. A., Mamona-Downs, J., Leung, S. S. & Kenney, P. A. (1996). Posing mathematical problems: an exploratory study. Journal for Research in Mathematics, 27 (3), 293- 309.
  • Silver, E., A. & Cai, J. (1996). An analysis of arithmetic problem posing by middle school. Journal For Research in Mathematics Education, 27, 521-539.
Year 2014, Volume: 43 Issue: 2, 1 - 234, 30.09.2014

Abstract

References

  • Akar, F. (2006). The efffectiveness of the discovery learning strategy on the mathematics achievement at the second step elementary. Unpublished master’s thesis, Çukurova University, The Institute of Social Sciences, Adana, Turkey.
  • Altun, M. (2002). Maths teaching in 6th,, 7th and 8th classes, (2nd ed.). Bursa: Alfa Publishing.
  • Başar,M., Ünal, M. &Yalçın, M. (2001). The reasons of the maths fear starting from the primary school. the congress of v. science and maths education. Retrieved August 10, 2007, from http://www.fedu.metu.edu.tr/ufbmek-5/b_kitabi/PDF/Matematik/Bildiri/t212d.pdf
  • Cooper, B. & Harries, T. (2002). Children’s responses to contrasting ‘realistic’ mathematics problems: Just how realistic are children ready to be mathematics. Educational Studies in Mathematics, 49, 1- 23.
  • De Bock, D., Van Dooren,W., Janssens, D. & Verschaffel, L. (2002). Improper use of linear reasoning: An in-depth study of the nature and the irresistibility of secondary school students’ errors. Educational Studies in Mathematics, 50, 311–334.
  • Depaepe, F., De Corte, E. & Verschaffel, L. (2010). Teachers’ approaches towards word problem solving: Elaborating or restricting the problem context. Teaching and Teacher Education, 26, 152-160.
  • Dursun, Ş. & Dede, Y. (2004). The factors affecting students’ success in mathematics: Mathematics teachers’ perspectives. Gazi University, The Journal of the Education Faculty, 24(2), 217–230.
  • Erden, M. (1986). Primary school 1st, 2nd, 3rd, 4th, and 5th graders’ behaviours when solving problems based on four operations. Hacettepe University, The Journal of the Education Faculty, 1, 105–113.
  • Ersoy, Y. & Gür, H. (2004). Maths teaching based on problem setting and solving approach – 1: Teachers’ experiences and some problems. The board of mathematicians: The science corner. Retrieved July 17, 2007, from http://www.matder.org.tr/bilim/hgyepk.asp?ID=82
  • Gainsburg, J. (2008). Real-worlds connections in secondary mathematics classrooms. Journal of Mathematics Teacher Education, 11, 199-219.
  • Greer, B. (1997). Modelling reality in mathematics classrooms: The case of word problems. Learning and Instruction, 7(4), 293–307.
  • Gür, H. & Korkmaz, E. (2003). The identification of primary school 7th graders’ problem development skills. The board of mathematicians: The science corner. Retrieved August 15, 2007, from http://www.matder.org.tr/bilim/i7sopoabb.asp?ID=38
  • Inoue, N. (2005). The realistic reasons behind unrealistic solutions: the role of interpretive activity in word problem solving. Learning and Instruction, 15, 69-83.
  • Inoue, N. (2002). The role of personal interpretation in mathematical problem solving. Columbia University.
  • National Council of Teachers of Mathematics. (2000). Principles and Standards for school mathematics, national council of teachers of mathematics. Reston, VA.
  • Reusser, K. & Stebler, R. (1997). Every word problem has a solution – the social rationality of mathematical modeling in schools. Learning and Instruction, 7, 309-327.
  • Sevgen, B. (2002). The structure and the development of mathematical thought. The proceedings of v. national science and maths teaching congress ulusal fen bilimler. Retrieved August 10, 2007, from http://www.fedu.metu.edu.tr/ufbmek-5/b_kitabi/PDF/Matematik/Bildiri/t250DD.pdf
  • Soylu, Y. & Soylu, C. (2006). The importance of problem solving in the way of achievement in maths classes. İnönü University, The Journal of the Education Faculty, 7(11), 97–111.
  • Verschaffel, L., De Corte, E. & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, (4), 273-294.
  • Verschaffel, L., Greer, B. & De Corte, E. (2000). Making sense of word problems. Lise: Swets and Zeitlinger.
  • Verschaffel, L., De Corte, E., & Viersraete H. (1999). Upper elementary school pupils’ difficulties in modeling and solving nonstandard additive word problems involving numbers. Journal for Research in Mathematics Education, 3(30), 265-285.
  • Umay, A. (2007). The new face of our old friend (1st ed.). Ankara: Aydan WEB Foundations.
  • Umay, A. (2003). The ability of mathematical reasoning. Hacettepe University, The Journal of the Education Faculty, 24, 234-243.
  • Xin, Z. & Zhang, L. (2009). Cognitive holding power, fluid intelligence, and mathematical achievement as predictors of children’s realistic problem solving. Learning and Individual Differences, 19, 124-129.
  • Yazgan, Y. & Bintaş, J. (2005). Fourth and fifth grade students’ level of problem solving strategies: A teaching experiment. Hacettepe University, the Journal of the Education Faculty, 28, 210-218.
  • Yoshida, H., Vershaffel, L. & De Corte, E. (1997). Realistic considerations in solving problematic word problems: Do Japanese and Belgian children have the same difficulties? Learning And Instruction, 7, 329-338.
  • Altunışık, R., Coşkun, R., Bayraktaroğlu, S. & Yıldırım, E. (2004). Sosyal bilimlerde arastırma yöntemleri. Sakarya: Sakarya Kitapevi.
  • An, S., Kulm, G., & Wu, Z. (2004). The pedagogical content knowledge of middle school, mathematics teachers in China and the US. Journal of Mathematics Teacher Education, 7 (2), 145–172.
  • Aslan-Tutak, F. (2011). Öğretmen adaylarının geometrik kavram yanılgıları: simetri ve eslik. Matematik Öğretimine Çağdaş Yaklaşımlar Sempozyumu, Çalıştaylar ve Bildiri Özetleri Kitabı, 27. Denizli.
  • Babbington, S. & Lomas, G. (2004). Enhancing mathematical content knowledge in new zealand early childhood education. The International Congress of Mathematics Education. Copenhagen, Denmark. Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi. Ankara: Harf Egitim Yayıncılık.
  • Ball D., L, Lubienski S.,T. & Mewborn D., S. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In Richardson V (Ed.), Handbook of research on teaching (pp. 433–456) 4th edn. New York: Macmillian.
  • Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. Elementary School Journal, 90 (4), 449-466.
  • Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 83–104). Westport, CT: Ablex.
  • Ball, D. L., & McDiarmid, G. W. (1988). Research on teacher learning: Studying how teachers’ knowledge changes. Action in Teacher Education, 10 (2), 17-24.
  • Ball, D. L., & McDiarmid, G. W. (1990). The subject matter preparation of teachers. In W. R. Houston (Ed.), Handbook of research on teacher education: A project of the Association of Teachers (pp. 437- 449). New York: MacMillan.
  • Ball, D.L. (1988a). Unlearning to teach mathematics. For the Learning of Mathematics, 8 (1), 40–48.
  • Ball, D.L. (1988b). The subject matter preparation of prospective mathematics teachers: Challenging the myths. (Research Report 88-3. East Lansing, MI: National Center for Research on Teacher Education). Retrieved January 3, 2013,from http://ncrtl.msu.edu/http/rreports/html/pdf/rr883.pdf
  • Barrantes, M. & Blanco, L., J. (2006). A study of prospective primary teachers’ conceptions of teaching and learning school geometry. Journal of Mathematics Teacher Education, 9, 411-436.
  • Baturo, A., & Nason, R. (1996). Student teachers’ subject matter knowledge within the domain of area measurement. Educational Studies in Mathematics, 31, 235-268.
  • Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van hiele levels of development in geometry. Journal For Research in Mathematics Education, 17 (1), 31-48.
  • Bütün, M. (2005). A study on primary mathematics teachers’ pedagogical content knowledge. Unpublished master’s thesis, Karadeniz Teknik University, Trabzon.
  • Carpenter, T., Fennema, E., Peterson, P., Chiang, C., & Loef, M. (1989). Using knowledge of children’s mathematics thinking in classroom teaching: An experimental study. American Educational Research Journal, 26 (4), 499-531.
  • Chinnappan, M., Nason, R., & Lawson, M. (1996). Pre-service teachers’ pedagogical and content knowledge about trigonometry and geometry: An initial investigation. In P. C. Clarkson (Ed), Proceedings of the 19th Annual Conference of the Mathematics Education Research Group of Australasia. Melbourne, MERGA.
  • Clements, D. H. (1998). Geometric and spatial thinking in young children. Arlington, VA: National Science Foundation.
  • Clements, D. H. (1999). Geometric and spatial thinking in young children. In J. V. Copley (Ed.), Mathematics in the early years (pp. 66–79). Reston, VA: National Council of Teachers of Mathematics.
  • Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowing: an integrative model for teacher preparation. Journal of Teacher Education 44(4), 263–272.
  • Cunningham, F. & Roberts, A. (2010). Reducing the mismatch of geometry concept definitions and concept images held by pre-service teachers. IUMPS The Journal, 1, 1-17.
  • Currie, P., & Pegg, J. (1998). Investigating students' understanding of the relationships among quadrilaterals. In C. Kanes, M. Goos, & E. Warren. (Eds.), Teaching Mathematics in New Times: Conference Proceedings. Melbourne: Mathematics Education Research Group of Australasia Incorporated.
  • De Villiers, M., (1996). The future of secondary school geometry. Slightly adapted version of Plenary technology course]. Unpublished master’s thesis, Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir, Turkey.
  • Baysen, E. (2006). Öğretmenlerin sınıfta sordukları sorular ile öğrencilerin bu sorulara verdikleri cevapların düzeyleri [The levels of teacher questıons and student answers], Kastamonu Eğitim Dergisi. 14(1), 21-28.
  • Berberoğlu, G., Arıkan, S., Demirtaşlı, N., İş Güzel, Ç., & Özgen Tuncer, Ç. (2009). İlköğretim 1.-5. sınıflar arasındaki öğretim programlarının kapsam ve öğrenme çıktıları açısından değerlendirilmesi. Cito Eğitim: Kuram ve Uygulama, 1, 10-48.
  • Brotherton, P.N., & Preece, P.F.W. (1996). Teaching science process skills. International Journal of Science Education, 18, 65-74.
  • Coil, D., Wenderoth, M. P., Cunningham, M., & Dirks, C. (2010). Teaching the process of science: Faculty perceptions and an effective methodology. CBE—Life Sciences Education, 9, 524–535.
  • Department for Education Science (DfES) (2004). Science: The National Curriculum for England. London: DfEE. Retrieved 10/01/2012, from www.qca.org.uk/nc/
  • Dirks, C. & Cunningham, M. (2006). Enhancing diversity in science: Is teaching science process skills the answer? CBE—Life Sciences Education, 5 (3), 218–226.
  • ERG (Eğitim Reformu Girişimi) (2011). Education monitoring report 2010: Execute summary 2010, Istanbul, Turkey. Retrieved 10/01/2012, from http://erg.sabanciuniv.edu/sites/erg.sabanciuniv. edu/files/EIR_2010_Exe_Sum.pdf
  • Fraenkel, J. R. & Wallen, N. E. (2006). How to design and evaluate research in education. (6th ed.) New York: McGraw-Hill.
  • Germann, P. J. & Aram, R. J. (1996). Student performances on the science processes of recording data, analyzing data, drawing conclusions, and providing evidence. Journal of Research in Science Teaching, 33(7), 773-798.
  • Güneş, B. (Ed.). (2008). İlkoğretim 7. sınıf fen ve teknoloji ders kitabı [7th grade science and technology textbook].MEB Devlet Kitapları, Ankara: İmpress.
  • Hackling, M.W. (2005). Working Scientifically: Implementing and Assessing Open Investigation Work is Science. A resources book for teachers of primary and secondary science. Department of Education and Training, Western Australia. Retrieved 10/01/2012, from http://www.angelfire.com/sc/staws /Working_Scientifically.pdf
  • Klahr, D. & Chen, Z. (2003). Overcoming the positive-capture strategy in young children: learning about Akay, H. (2006). Problem kurma yaklaşımı ile yapılan matematik öğretiminin öğrencilerin akademik başarısı, problem çözme becerisi ve yaratıcılığı üzerindeki etkisinin incelenmesi. Unpublished doctoral dissertation, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Akkan, Y., Çakıroğlu, Ü. ve Güven, B. (2009). İlköğretim 6. ve 7. Sınıf öğrencilerinin denklem oluşturma ve problem kurma yeterlilikleri. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 9 (17), 41-55. Baykul, Y. (1999). İlköğretimde matematik öğretimi. Ankara: Milli Eğitim Bakanlığı Yayınları.
  • Brown, S.I. & Walter, M. I. (1990). The art of problem posing. New Jersey: Lawrence Erlbaum Associates, Inc., Publishers.
  • Çakmak, M. (2005). İlköğretimde etkili matematik öğretimi ve öğretmen rolleri. In A. Altun ve S. Olkun, (Eds.), Güncel gelişmeler ışığında ilköğretim: matematik-fen-teknoloji-yönetim. (pp. 37-57). Ankara: Anı Yayıncılık.
  • Demir, B. B. (2005). The effect of instruction with problem posing on tenth grade students’ probability achievement and attitudes toward probability. Unpublished master’s thesis, Middle Esast Technical University, Ankara.
  • English, L. D. & Halford, G. S. (1995). Mathematics education models and processes. USA: Lawrence Erlbaum Associates.
  • Erbaş, A. K. (2005). Çoklu gösterimlerle problem çözme ve teknolojinin rolü. The Turkish Online Journal of Educational Technology, 4 (4), 88-92.
  • Fidan, S. (2008). İlköğretim 5. sınıf matematik dersinde öğrencilerin problem kurma çalışmalarının problem çözme başarısına etkisi. Unpublished master’s thesis, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Grundmeier, T. A. (2003). The effects of providing mathematical problem posing experiences for K-8 pre- service teachers: investigating teachers’ beliefs’ and characteristics of posed problems. Unpublished doctoral dissertation, University of New Hampshire, USA.
  • Gündüz, Ş. ve Odabaşı, F. (2004). Bilgi çağında öğretmen adaylarının eğitiminde öğretim teknolojileri ve materyal geliştirme dersinin önemi. TOJET, 3 (1), 43-48.
  • Gür, H. ve Korkmaz, E. (2003). İlköğretim 7. Sınıf öğrencilerinin problem ortaya atma becerilerinin belirlenmesi. Matematikçiler Derneği Matematik Köşesi Makaleleri. Retrieved January 13, 2010, from http://www.matder.org.tr
  • Güven, M. ve Kürüm, D. (2008). Öğretmen adaylarının öğrenme stilleri ile eleştirel düşünme eğilimleri arasındaki ilişki (Anadolu Üniversitesi Eğitim Fakültesi öğrencileri üzerinde bir araştırma). İlköğretim Online, 7 (1), 53-70.
  • Kilpatrick, J. (1987). Where do good problems come from?. In A. H. Schoenfeld, (Ed), Cognitive science and mathematics education, (pp. 123-148). USA: Lawrence Erlbaum Associates, Inc., Publishers.
  • Kojima, K., Miwa, K. & Matsui, T. (2009). Study on support of learning from examples in problem posing as
  • http://www.apsce.net/ICCE2009/pdf/C1/proceedings075-082.pdf task. Retrieved August 12, 2010,
  • from Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysis. Thousand Oaks, CA: Sage Publications. Olkun, S. (2003). Öğrencilere hacim formülü ne zaman anlamlı gelir?. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 25, 160-165.
  • Olkun, S. (2008). Matematik eğitiminde beceriler. In A. Özdaş, (Ed), Matematik, fen ve teknoloji öğretimi (pp. 31- 48). Eskişehir: Anadolu Üniversitesi Açıköğretim Fakültesi Yayınları.
  • Olkun, S. ve Toluk, Z. (2003). İlköğretimde etkinlik temelli matematik öğretimi. Ankara: Anı Yayıncılık.
  • Özer, B. (1998). Öğrenmeyi öğretme. In A. Hakan, (Ed.), Eğitim bilimlerinde yenilikler (pp. 147 - 164). Eskişehir: Anadolu Üniversitesi Açıköğretim Fakültesi Yayınları.
  • Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM, 29 (3), 75-80.
  • Silver, E. A., Mamona-Downs, J., Leung, S. S. & Kenney, P. A. (1996). Posing mathematical problems: an exploratory study. Journal for Research in Mathematics, 27 (3), 293- 309.
  • Silver, E., A. & Cai, J. (1996). An analysis of arithmetic problem posing by middle school. Journal For Research in Mathematics Education, 27, 521-539.
There are 82 citations in total.

Details

Primary Language Turkish
Journal Section Article
Authors

Cuefj Lıst This is me

Publication Date September 30, 2014
Submission Date September 30, 2014
Published in Issue Year 2014 Volume: 43 Issue: 2

Cite

APA Lıst, C. (2014). CUFEJ VOL: 43 NO: 2 ALL ARTICLES. Çukurova Üniversitesi Eğitim Fakültesi Dergisi, 43(2), 1-234.

Copyright © 2011

Cukurova University Faculty of Education

All rights reserved