Research Article
BibTex RIS Cite

Sorgulamaya Dayalı Öğrenme Yaklaşımı Aracılığıyla Öğrenci Tutum ve Görüşlerinin Belirlenmesi

Year 2020, Volume: 49 Issue: 2, 555 - 599, 28.10.2020

Abstract

Bu çalışmanın amacı, dalgalar konusunun sorgulamaya dayalı öğrenme yaklaşımına göre uygulanmasında öğrencilerin dalgalar konusuna yönelik tutumlarının ve fizik dersinin öğretim sürecine ilişkin görüşlerinin belirlenmesidir. Araştırma, 2017-2018 öğretim yılının bahar döneminde bir Anadolu lisesinin 10. sınıfında öğrenim gören öğrencilerle gerçekleştirilmiştir. Araştırmada karma yöntem araştırmaları içerisinde yer alan gömülü deneysel desen benimsenmiştir. Araştırmada veri toplama aracı olarak dalgalar konusuna yönelik tutum ölçeği ve yarı yapılandırılmış görüşmeler kullanılmıştır. Nicel verilerin analizinde bağımlı gruplar t-testi ve betimsel analiz kullanılmış, nitel verilerin analizinde ise içerik analizden yararlanılmıştır. Araştırma sonucunda öğrencilerin tutum düzeyleri arasında anlamlı ölçüde fark olduğu ve son testte öğrencilerin tutumlarının arttığı belirlenmiştir. Fizik dersinin öğretim sürecine yönelik ise, öğrencilerin görüşlerinin olumlu yönde değiştiği ve öğrenciler tarafından sorgulamaya dayalı öğrenme yaklaşımı uygulamalarının desteklendiği tespit edilmiştir. Öğrencilerin geleneksel anlayıştan uzak sorgulamaya dayalı öğrenme yaklaşımlarını destekledikleri göz önüne alındığında, alanda bu tarz öğrenme yaklaşımlarının yaygınlaştırılması önerilebilir.

References

  • Abdurrahman, A. (2017). Efektivitas dan kendala pembelajaran sains berbasis inkuiri terhadap capain dimensi kognitif siswa: Meta analisis. Tadris: Jurnal Keguruan dan Ilmu Tarbiyah, 2(1), 1-9.
  • Abell, S. K., & Volkmann, M. J. (2006). Seamless assessment in science. A guide for elementary and middle school teachers. USA: Heinemann and NSTA.
  • Adiyaman, M., & Sert, H. (2017). Attitudes of high school students towards physics. Journal of Current Researches on Educational Studies, 7(1), 117-134.
  • Akerson, V. L., Townsend, S., Donnelly, L. A., Hanson D. L., Tira, P., & White, O. (2009). Scientific modeling for inquiring teachers’ network (Smit’n): The influence on elementary teachers’ views of nature of science, inquiry, and modeling. Journal of Science Teacher Education, 20, 21-40.
  • Alouf, J. L., & Bentley, M. L. (2003). Assessing the impact of inquiry-based science teaching in professional development activities, PK-12. Annual Meeeting of The Association of Teacher Educators, Jacksonville: FL.
  • Aulia, E. V., Poedjiastoeti, S., & Agustini, R. (2018). The effectiveness of guided inquiry-based learning material on students’ science literacy skills. J. Phys.: Conf. Ser., 947, 012049.
  • Ayvacı, H. Ş., & Bakırcı, H. (2012). Fen ve teknoloji öğretmenlerinin fen öğretim süreçleriyle ilgili görüşlerinin 5E öğretim modeli açısından incelenmesi. Türk Fen Eğitimi Dergisi, 9(2), 132-151.
  • Ayvacı, H. Ş., & Bebek, G. (2018). Fizik öğretimi sürecinde yaşanan sorunların değerlendirilmesine yönelik bir çalışma. Kastamonu Üniversitesi Kastamonu Eğitim Dergisi, 26(1), 1-10.
  • Balta, N. & Asikainen, M. A. (2019). Introductory students’ attitudes and approaches to physics problem solving: Major, achievement level and gender differences. Journal of Technology and Science Education, 9(3), 378-387.
  • Bao, L., & Koenig, K. (2019). Physics education research for 21st century learning. Disciplinary and Interdisciplinary Science Education Research, 1(2), 1-12.
  • Barman, C. R., & Miller, J. A. (1996). Two teaching methods and students’ understanding of sound. School Science and Mathematics, 2, 63-67.
  • Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: Models, tools and challenges. International Journal of Science Education, 32(3), 349-377.
  • Boddy, N., Watson, K., & Aubusson, P. (2003). A trial of the es: A referent model for constructivist teaching and learning. Research in Science Education, 33, 27-42.
  • Brown, T. A. (2015). Confirmatory factor analysis for applied research. New York: The Guilford Press.
  • Bryman, A., & Cramer, D. (1999). Quantitative data analysis with SPSS release 8 for windows. London and New York: Taylor & Francis e Library, Routledge.
  • Büyüköztürk, Ş. (2007). Sosyal bilimler için veri analizi el kitabı (7. Baskı). Ankara: Pegem Akademi.
  • Büyüköztürk, Ş. (2007). Deneysel desenler. Ankara: Pegem Akademi.
  • Bybee, R. (1993). Instructional model for science education, in developing biological literacy. Colorado Springs, Co: Biological Sciences Curriculum Studies.
  • Bybee, R. (1997). Achieving scientific literacy: from purposes to practices. Portsmouth: UK, Heinemann.
  • Chairam, S., Klahan, N., & Coll, R. K. (2015). Exploring secondary students’ understanding of chemical kinetics through inquiry-based learning activities. Eurasia Journal of Mathematics, Science & Technology Education, 11(5), 937-956.
  • Chiappetta E. L., & Adams, A. D. (2004). Inquiry-Based instruction. The Science Teacher, 71(2), 46-50.
  • Christensen, L. B., Johnson, R. B., & Turner, L. A. (2015). Araştırma yöntemleri desen ve analiz (A. Aypay, Çeviri Editörü). Ankara: Anı.
  • Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49, 997-1003.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Edition). Hillsdale, NJ: Erlbaum.
  • Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches (2. ed.). Thousand Oaks, CA: Sage.
  • Creswell, J. W. (2014). Research design. Qualitative, quantitative and mixed methods approaches (Fourth Edition). Lincoln: Sage.
  • Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52, 281-302.
  • Çam, F. (2008). Biyoloji derslerinde yaşam temelli öğrenme yaklaşımının etkileri (Yayımlanmamış yüksek lisans tezi). Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum.
  • Çepni, S. (2014). Araştırma ve proje çalışmalarına giriş (Genişletilmiş 7. baskı). Trabzon: Celepler Matbaacılık.
  • Çepni, S., & Çil, E. (2009). Fen ve teknoloji programı i̇lköğretim 1. ve 2. kademe öğretmen kitabı. Ankara: Pegem Akademi.
  • Dagar, V., & Yadav, A. (2016). Constructivism: A paradigm for teaching and learning. Arts and Social Sciences Journal, 7(4), 1-4.
  • Dilşeker, Z., & Serin, O. (2018). Fen ve teknoloji dersinde proje tabanlı öğrenme yöntemi kullanımının ilköğretim 5. sınıf öğrencilerinin fen ve teknoloji dersine yönelik tutumlarına, ders başarısına ve kavram yanılgılarının giderilmesine etkisi. International Journal of New Trends in Arts, Sports & Science Education, 7(2), 1-30.
  • Djudin, T. (2018). How to cultivate students’ interest in physics: A challenge for senior high school teachers. Jurnal Pendidikan Sains, 6(1), 16-22.
  • Donohue, K., Buck, G. A., & Akerson, V. (2020). Where’s the science?. Exploring a new science teacher educators’ theoretical and practical understandings of scientific inquiry. International Journal of Research in Education and Science, 6(1), 1-13.
  • Ecevit, T., & Kaptan, F. (2019). 21. yüzyıl becerilerinin kazandırılmasına yönelik tasarlanan argümantasyon destekli Araştırma sorgulamaya dayalı öğretim modelinin betimlenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi. Advance online publication. doi: 10.16986/HUJE.2019056328
  • Fazio, C., Tarantino, G., & Sperandeo-Mineo, R. M. (2010). An inquiry-based approach to physics teacher education: The case of sound properties. Teaching and Learning Physics Today: Challenges? Benefits? Conference, France.
  • Firman, M. A., Ertikanto, C., & Abdurrahman, A. (2019). Description of meta-analysis of inquiry-based learning of science in improving students‘ inquiry skills. J. Phys.:Conf. Ser., 1157, 022018.
  • Fischer, E., & Hanze, M. (2019). Back from „guide on the side“ to „sage on the stage“? Effects of teacher-quided and student-activating teaching methods on student learning in higher education. International Journal of Educational Research, 95, 26-35.
  • Fraenkel, J. R., & Wallen, N. E. (2006). How to design and evaluate research in education (Sixth edition). Boston: McGraw-Hill.
  • Gay, L. R., & Airasian, P. (2000). Educational research: Competencies for analysis and application. New Jersey: Prentice-Hall Inc.
  • Glesne, C. (2012). Nitel araştırmaya giriş. A. Ersoy ve P. Yalçınoğlu (Çev. Ed.). Ankara: Anı.
  • Harrison, A. G., & Treagust, D. F. (2001). Conceptual change using multiple interpretive perspectives: Two case studies in secondary school chemistry. Instructional Science, 29, 45–85.
  • Hewson, M. G., & Hewson, P. W. (2003). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 40, 86-98.
  • Hrepic, Z. (2002). Identifying students’ mental models of sound propagation (Unpublished Master’s thesis). Kansas State University, Manhattan.
  • Hwang, G. J., Chiu, L. Y., & Chen, C. H. (2015). A contextual game-based learning approach to improving students’ inquiry-based learning performance in social studies courses. Computers & Education, 81, 13-25.
  • Johnson, B. R., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14-26.
  • Johnson, R. B., & Christensen, L. B. (2019). Educational Research (7th ed.). Los Angeles: Sage.
  • Kalaycı, Ş. (2005). SPSS uygulamalı çok değişkenli istatistik teknikleri. Ankara: Asil Yayın Dağıtım.
  • Kang, J., & Keinonen, T. (2018). The effect of student-centered approaches on students’ interest and achievement in science: Relevant topic-based, open and guided inquiry-based and discussion-based approaches. Research in Science Education, 48, 865-885.
  • Karamustafaoğlu, S. (2003). Maddenin iç yapısına yolculuk ünitesi ile ilgili basit araç- gereçlere dayalı rehber materyal geliştirilmesi ve öğretim sürecindeki etkililiği (Yayımlanmamış doktora tezi). Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Katrancı, Y., & Şengül, S. (2020). Ortaokul öğrencilerinin matematiğe yönelik sorgulayıcı öğrenme becerilerinin problem çözmeye yönelik sorgulama, değerlendirme, nedenleme ve yansıtıcı düşünme becerileri açısından değerlendirilmesi. Eğitim ve Bilim, 45(201), 55-78.
  • Katsarova, K., & Raykova, Z. (2019). An opportunity to study mechanical waves by the use of inquiry methods. AIP Conference Proceedings, 2075(1), 180019.
  • Kidman, G., & Casinader, N. (2017). Inquiry-based teaching and learning across disciplines. UK: Palgrave Mcmillan.
  • Kotrlik, J. W., & Williams, H. A. (2003). The incorporation of effect size in information technology, learning, and performance research. Information Technology, Learning and Performance Journal, 21(1), 1-7.
  • Krahenbuhl, K. S. (2016). Student-centered education and constructivism: Challenges, concerns, and clarity for teachers. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 89(3), 97-105.
  • Krippendorff, K. (2004). Content analysis: An introduction to its methodology (Second Edition). USA: Sage.
  • Kuter, S., & Ozer, B. (2020). Student teachers’ experiences of constructivism in a theoretical course built on inquiry-based learning. Journal of Qualitative Research in Education, 8(1), 135-155.
  • Laipply, R. S. (2004). A case study of self-efficacy and attitudes toward science in an inquiry-based biology laboratory (Unpublished doctoral thesis). Akron University, United States.
  • Lederman, N. G., Lederman, J. S., & Antink, A. (2013). Nature of science and scientific inquiry as contexts for the learning of science and achievement of scientific literacy. International Journal of Education in Mathematics, Science and Technology, 1(3), 138-147.
  • Lederman, J. S., Lederman, N. G., Bartels, S., & Jimenez, J. (2019). An international collaborative investigation of beginning seventh grade students’ understandings of scientific inquiry: Establishing a baseline. Journal of Research in Science Teaching, 56, 488-515.
  • Lim, B. R. (2001). Guidelines for designing inquiry-based learning on the web: Online professional development of educators (Unpublished doctoral thesis). Indiana University, United States.
  • Linder, C. J., & Erickson, G. L. (1989). A study of tertiary physics students’ conceptualizations of sound. International Journal of Science Education, 11, 491-501.
  • Llewellyn, D. (2002). Inquire within implementing inquiry-based science standarts. California: Corwin Press.
  • Lodico, M. G., Spaulding, D. T., & Voegtle, K. H. (2010). Methods in educational research: From theory to practice (Vol. 28). John Wiley & Sons.
  • MacKenzie, T. (2016). Dive into inquiry. Irvine, California: EdTechTeam.
  • Maurines, L. (1992). Spontaneous reasoning on the propagation of visible mechanical signals. International Journal of Science Education, 14, 279-293.
  • McDermott L. C., & Redish E. F. (1999). RL-PER1: Resource Letter on Physics Education Research. Am. J. Phys. 67(9), 755-767.
  • McConney, A., Oliver, M. C., Woods-McConney, A., Schibeci, R., & Maor, D. (2014). Inquiry, engagement, and literacy in science: A retrospective, cross-national analysis using PISA 2006. Science Education, 98(6), 963-980.
  • Merriam, S. B. (1988). Case study research in education: A qualitative approach. San Francisco: Jossey- Bass.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (Second Edition). California: Sage.
  • Milli Eğitim Bakanlığı. (2013). Ortaöğretim Fizik Dersi Öğretim Programı. Ankara: Talim ve Terbiye Kurulu Başkanlığı.
  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction-what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 47(4), 474-496.
  • National Academy of Sciences [NAS]. (1997). Science for all children. A guide to improving elementary science education in your school district. Washington, D.C.: National Academy Press.
  • Neuendorf, K. A. (2002). The content analysis guide book (Second Edition). USA: Sage.
  • Ormancı, Ü., & Çepni, S. (2019). Rehberli Araştırma-sorgulama yaklaşımına uygun web destekli fen materyali geliştirilmesi: Kemikler. Araştırma Temelli Etkinlik Dergisi, 9(2), 96-108.
  • Özdemir, Y. G. (2015). Onuncu sınıf dalgalar konusunun sosyal yapılandırmacı kuram temelli öğretiminde farklı etkinliklerin uygulama sırasının kavramsal ve duyuşsal değişime etkisi (Yayımlanmamış doktora tezi). Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir.
  • Özdemir, Y. G., & Kocakülah, S. (2016). Mekanik dalgaların öğretiminde kullanılan farklı etkinliklerin uygulanma sırasının kavramsal değişime etkisi. Eğitim ve Öğretim Araştırmaları Dergisi, 5(3), 150-163.
  • Özsevgeç, T., Çepni, S., & Özsevgeç, L. C. (2006). 5E modelinin kavram yanılgılarını gidermedeki etkililiği: Kuvvet-hareket örneği. VII. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Ankara.
  • Öztürk, S. (2014). Lise-1 düzeyindeki öğrencilerin modsal betimlemeleri tanıyıp öğrenme amaçlı yazmada kullanmalarının Fizik dersi dalgalar ünitesindeki akademik başarıya etkisi (Yayımlanmamış yüksek lisans tezi). Atatürk Üniversitesi, Eğitim Bilimleri Enstitüsü, Erzurum.
  • Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., & Ralle, B. The ChiK Project Group (2006). “Chemie im kontext”: A symbiotic implementation of a context-based teaching and learning approach. International Journal of Science Education, 28(9), 1041–1062.
  • Park, J., & Lee, L. (2004). Analysing congnitive or non-cognitive factors involved in the process of physics problem-solving in an everyday context. International Journal of Science Education, 26(13), 1577-1595.
  • Patton, M. Q. (1990). Qualitative evaluation and research methods (2. ed.). Newbury Park, CA: Sage.
  • Pedaste, M., Maeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47-61.
  • Perkins, D. N. (1999). The many faces of constructivism. Educational Leadership, 57(3), 6-11.
  • Perry, V. R., & Richardson, C. P. (2001). The new Mexico tech master of science teaching program: An exemplary model of inquiry-based learning. 31st ASEE/IEEE Frontiers in Education Conference, Reno.
  • Reid, N., & Skryabina, E. A. (2002). Attitudes towards physics. Research in Science and Technological Education, 20(1), 67-81.
  • Russo, A., & Adorno, D. P. (2018). An inquiry-based learning path to introduce modern physics in high-school. J. Phys.: Conf. Ser., 1076, 012007.
  • Sabourin, J., Mott, B., & Lester, J. (2013). Discovering behavior patterns of self-regulated learners in an inquiry-based learning environment. In International Conference on Artificial Intelligence in Education (pp. 209-218). Springer, Berlin, Heidelberg.
  • Sağdıç, M. (2018). Rehberli sorgulama öğretim modeline göre fen öğretiminin ortaokul öğrencilerin üzerindeki etkisinin incelenmesi: Kuvvet ve enerji ünitesi örneği (Yayımlanmamış yüksek lisans tezi). Van Yüzüncü Yıl Üniversitesi, Eğitim Bilimleri Enstitüsü, Van.
  • Saka, A., & Akdeni̇z, A. R. (2006). Genetik konusunda bilgisayar destekli materyal geliştirilmesi ve 5e modeline göre uygulanması. The Turkish Online Journal of Educational Technology, 5(1), 14.
  • Sari, U., & Guven, G. B. (2013). The effect of interactive whiteboard suppoted inquiry-based learning on achievement and motivation in physics and views of prospective teachers toward the instruction. Necatibey Faculty of Education Journal of Science and Mathematics Education, 7(2), 110-143.
  • Schofield, J. W. (1990). Increasing the generalizability of qualitative research. W. W. Eisner & A. Peshkin (ED.). Qualitative inquiry in education: The continuing debate (pp.201-232). New York: Teachers College Press.
  • Sheldrake, R., Mujtaba, T., & Reiss, M. J. (2019). Students’ changing attitudes and aspirations towards physics during secondary school. Research in Science Education, 49, 1809-1834.
  • Shi, W. Z., Ma, L., & Wang, J. (2020). Effects of inquiry-based teaching on Chinese university students’ epistemologies about experimental physics and learning performance. Journal of Baltic Science Education, 19(2), 289-297.
  • Shih, J. L., Chuang, C. W., & Hwang, G. J. (2010). An inquiry-based mobile learning approach to enhancing social science learning effectiveness. Educational Technology & Society, 13(4), 50-62.
  • Sözbilir, M., Sadi, S., Kutu, H., & Yıldırım, A. (2007). Kimya eğitiminde içeriğe/bağlama dayalı (context-based) öğretim yaklaşımı ve dünyadaki uygulamaları. I. Ulusal Kimya Eğitimi Kongresi, sf. 108.
  • Stephen, U. A. S. (2015). Problems of improvising instructional materials for the teaching and learning of physics in akwa ibom state secondary schools: Nigeria. British Journal of Education, 3(3), 27-35.
  • Syifahayu. (2017). Inquiry-based integrated science education: Implementation of local content “soil washing” project to improve junior high school students’ environmental literacy. J. Phys.: Conf. Ser., 812, 012082.
  • Taasoobshirazi, G., & Carr, M. (2008). A review and critique of context-based physics instruction and assessment. Educational Research Review, 3, 155-167.
  • Tan, R. M., Yangco, R. T., & Que, E. N. (2020). Students’ conceptual understanding and science process skills in an inquiry-based flipped classroom environment. Malaysian Journal of Learning & Instruction, 17(1), 159-184.
  • Tatar, N. (2006). İlköğretim fen eğitiminde araştırmaya dayalı öğrenme yaklaşımının bilimsel süreç becerilerine, akademik başarıya ve tutuma etkisi (Yayımlanmamış doktora tezi). Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Teddlie, C., & Tashakkori, A. (2015). Karma yöntem araştırmalarının temelleri (Y. Dede & S. B. Demir, Çev.). Ankara: Anı.
  • Tekbıyık, A. (2010). Bağlam temelli yaklaşımla ortaöğretim 9. sınıf enerji ünitesine yönelik 5E modeline uygun ders materyallerinin geliştirilmesi (Yayımlanmamış doktora tezi). Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Tezbaşaran, A. A. (2008). Likert tipi ölçek geliştirme kılavuzu (3. Baskı). Ankara: Türk Psikologları derneği.
  • Thier, H. D., & Daviss, B. (2001). Developing inquiry-based science materials. A guide for educators. Newyork: Teachers College Press.
  • Turnip, B., Wahyuni, I., & Tanjung, Y. I. (2016). The effect of inquiry training learning model based on just in time teaching for problem solving skill. Journal of Education and Practice, 7(15), 177-181.
  • Uum, M. S. J., Verhoeff, R. P., & Peeters, M. (2016). Inquiry-based science education: towards a pedagogical framework for primary school teachers. International Journal of Science Education, 38(3), 450-469.
  • Ural, A., & Kılıç, İ. (2005). Bliimsel araştırma süreci ve SPSS ile veri analizi. Ankara: Detay.
  • Wenk, L. (2000). Improving science learning: Inquiry-based and traditional first-year college science curricula (Unpublished doctoral thesis). Massachusetts University, Boston.
  • Westbroek, H. B. (2005). Characteristics of meaningful chemistry education, the case of water quality (Unpublished doctoral thesis). Utrecht University, Utrecht, The Netherlands.
  • Whitelegg, E., & Edwards, C. (2001). Beyond the laboratory: learning physics using real-life contexts. In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komorec, A. Kross, & P. Reiska. (Ed.), Research in science education: past, present, and future (pp. 337-342). Dordrecht: Kluwer Academic.
  • White, S., & Tyler, J. (2015). Who’s teaching what in high school physics?. The Physics Teachers, 53(3), 155-157.
  • Wilder, M., & Shuttleworth, P. (2005). Cell inquiry: A 5E learning cycle lesson. Science Activities, 41(4), 37-43.
  • Windschitl, M. (2003). Supporting the development of science inquiry skills with special classes of software. Educational Technology, Research and Development, 48(2), 81–95.
  • Wise, K. C. (2006). Can you hear them now? Investigating radio waves. Science Activities, 43(3), 23-30.
  • Wittmann, M. C. (2002). The object coordination class applied to wavepulses: Analysing student reasoning in wave physics. International Journal of Science Education, 24(1), 97-118.
  • Wood, W. B. (2003). Inquiry-based undergraduate teaching in life sciences at large research universities: A perspective on the boyer commision report. Cell Biology Education, 2, 112-116.
  • Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34(6), 806-838.
  • Wu, H. K., & Krajcik, J. S. (2006). Inscriptional practices in two inquiry-based classrooms: A case study of seventh graders’ use of data tables and graphs. Journal of Research in Science Teaching, 43(1), 63-95.
  • Wu, H. K., & Hsieh, C. E. (2006). Developing sixth graders’ inquiry skills to construct explanations in inquiry-based learning environments. International Journal of Science Education, 28(15), 1289-1313.
  • Yager, R. (1991). The constructivist learning model, towards real reform in science education. The Science Teacher, 58, 6.
  • Yalçın, Y. (2008). Su dalgaları konusunun öğretiminde işbirlikli öğrenme yönteminin öğrenci başarısına etkisi (Yayımlanmamış yüksek lisans tezi). Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.
  • Yaşar, Ş. (1998). Yapısalcı kuram ve öğrenme-öğretme süreci. Anadolu Üniversitesi Eğitim Fakültesi Dergisi, 8(1-2), 68-75.
  • Yıldırım, A. (1999). Nitel araştırma yöntemlerinin temel özellikleri ve eğitim araştırmalarındaki yeri ve önemi. Eğitim ve Bilim, 23(112), 7-17.
  • Yıldırım, A., & Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri (11. Baskı). Ankara: Seçkin.
  • Yin, R. (1994). Case study research design and methods (Second Edition). California: Sage.

Determining Students' Attitudes and Views Using an Inquiry-Based Learning Approach

Year 2020, Volume: 49 Issue: 2, 555 - 599, 28.10.2020

Abstract

This study aims to determine students' attitudes towards waves as a subject during its application according to the inquiry-based learning approach and to determine their views on the teaching process of physics classes. The study was conducted with the participation of 10th grade students of an Anatolian high school in the spring semester of the 2017-2018 academic year. In the study, the embedded experimental design was adopted, which is one of the mixed method researches—attitude scale for the waves, and semi-structured interviews were used as data collection tools. In the analysis of the quantitative data, paired-samples t-test, and descriptive analysis used. The content analysis is used for the analysis of qualitative data. At the end of the study, it is determined that there is a significant difference in students’ attitude levels and that their attitude increased in the post-test. About the teaching process of physics classes, it is determined that students' views have changed positively and that the students support inquiry-based learning applications. Given the fact that students support a learning approach based on inquiry rather than a traditional one, it can be suggested to spread such learning approaches in the field.

References

  • Abdurrahman, A. (2017). Efektivitas dan kendala pembelajaran sains berbasis inkuiri terhadap capain dimensi kognitif siswa: Meta analisis. Tadris: Jurnal Keguruan dan Ilmu Tarbiyah, 2(1), 1-9.
  • Abell, S. K., & Volkmann, M. J. (2006). Seamless assessment in science. A guide for elementary and middle school teachers. USA: Heinemann and NSTA.
  • Adiyaman, M., & Sert, H. (2017). Attitudes of high school students towards physics. Journal of Current Researches on Educational Studies, 7(1), 117-134.
  • Akerson, V. L., Townsend, S., Donnelly, L. A., Hanson D. L., Tira, P., & White, O. (2009). Scientific modeling for inquiring teachers’ network (Smit’n): The influence on elementary teachers’ views of nature of science, inquiry, and modeling. Journal of Science Teacher Education, 20, 21-40.
  • Alouf, J. L., & Bentley, M. L. (2003). Assessing the impact of inquiry-based science teaching in professional development activities, PK-12. Annual Meeeting of The Association of Teacher Educators, Jacksonville: FL.
  • Aulia, E. V., Poedjiastoeti, S., & Agustini, R. (2018). The effectiveness of guided inquiry-based learning material on students’ science literacy skills. J. Phys.: Conf. Ser., 947, 012049.
  • Ayvacı, H. Ş., & Bakırcı, H. (2012). Fen ve teknoloji öğretmenlerinin fen öğretim süreçleriyle ilgili görüşlerinin 5E öğretim modeli açısından incelenmesi. Türk Fen Eğitimi Dergisi, 9(2), 132-151.
  • Ayvacı, H. Ş., & Bebek, G. (2018). Fizik öğretimi sürecinde yaşanan sorunların değerlendirilmesine yönelik bir çalışma. Kastamonu Üniversitesi Kastamonu Eğitim Dergisi, 26(1), 1-10.
  • Balta, N. & Asikainen, M. A. (2019). Introductory students’ attitudes and approaches to physics problem solving: Major, achievement level and gender differences. Journal of Technology and Science Education, 9(3), 378-387.
  • Bao, L., & Koenig, K. (2019). Physics education research for 21st century learning. Disciplinary and Interdisciplinary Science Education Research, 1(2), 1-12.
  • Barman, C. R., & Miller, J. A. (1996). Two teaching methods and students’ understanding of sound. School Science and Mathematics, 2, 63-67.
  • Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: Models, tools and challenges. International Journal of Science Education, 32(3), 349-377.
  • Boddy, N., Watson, K., & Aubusson, P. (2003). A trial of the es: A referent model for constructivist teaching and learning. Research in Science Education, 33, 27-42.
  • Brown, T. A. (2015). Confirmatory factor analysis for applied research. New York: The Guilford Press.
  • Bryman, A., & Cramer, D. (1999). Quantitative data analysis with SPSS release 8 for windows. London and New York: Taylor & Francis e Library, Routledge.
  • Büyüköztürk, Ş. (2007). Sosyal bilimler için veri analizi el kitabı (7. Baskı). Ankara: Pegem Akademi.
  • Büyüköztürk, Ş. (2007). Deneysel desenler. Ankara: Pegem Akademi.
  • Bybee, R. (1993). Instructional model for science education, in developing biological literacy. Colorado Springs, Co: Biological Sciences Curriculum Studies.
  • Bybee, R. (1997). Achieving scientific literacy: from purposes to practices. Portsmouth: UK, Heinemann.
  • Chairam, S., Klahan, N., & Coll, R. K. (2015). Exploring secondary students’ understanding of chemical kinetics through inquiry-based learning activities. Eurasia Journal of Mathematics, Science & Technology Education, 11(5), 937-956.
  • Chiappetta E. L., & Adams, A. D. (2004). Inquiry-Based instruction. The Science Teacher, 71(2), 46-50.
  • Christensen, L. B., Johnson, R. B., & Turner, L. A. (2015). Araştırma yöntemleri desen ve analiz (A. Aypay, Çeviri Editörü). Ankara: Anı.
  • Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49, 997-1003.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Edition). Hillsdale, NJ: Erlbaum.
  • Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches (2. ed.). Thousand Oaks, CA: Sage.
  • Creswell, J. W. (2014). Research design. Qualitative, quantitative and mixed methods approaches (Fourth Edition). Lincoln: Sage.
  • Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52, 281-302.
  • Çam, F. (2008). Biyoloji derslerinde yaşam temelli öğrenme yaklaşımının etkileri (Yayımlanmamış yüksek lisans tezi). Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum.
  • Çepni, S. (2014). Araştırma ve proje çalışmalarına giriş (Genişletilmiş 7. baskı). Trabzon: Celepler Matbaacılık.
  • Çepni, S., & Çil, E. (2009). Fen ve teknoloji programı i̇lköğretim 1. ve 2. kademe öğretmen kitabı. Ankara: Pegem Akademi.
  • Dagar, V., & Yadav, A. (2016). Constructivism: A paradigm for teaching and learning. Arts and Social Sciences Journal, 7(4), 1-4.
  • Dilşeker, Z., & Serin, O. (2018). Fen ve teknoloji dersinde proje tabanlı öğrenme yöntemi kullanımının ilköğretim 5. sınıf öğrencilerinin fen ve teknoloji dersine yönelik tutumlarına, ders başarısına ve kavram yanılgılarının giderilmesine etkisi. International Journal of New Trends in Arts, Sports & Science Education, 7(2), 1-30.
  • Djudin, T. (2018). How to cultivate students’ interest in physics: A challenge for senior high school teachers. Jurnal Pendidikan Sains, 6(1), 16-22.
  • Donohue, K., Buck, G. A., & Akerson, V. (2020). Where’s the science?. Exploring a new science teacher educators’ theoretical and practical understandings of scientific inquiry. International Journal of Research in Education and Science, 6(1), 1-13.
  • Ecevit, T., & Kaptan, F. (2019). 21. yüzyıl becerilerinin kazandırılmasına yönelik tasarlanan argümantasyon destekli Araştırma sorgulamaya dayalı öğretim modelinin betimlenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi. Advance online publication. doi: 10.16986/HUJE.2019056328
  • Fazio, C., Tarantino, G., & Sperandeo-Mineo, R. M. (2010). An inquiry-based approach to physics teacher education: The case of sound properties. Teaching and Learning Physics Today: Challenges? Benefits? Conference, France.
  • Firman, M. A., Ertikanto, C., & Abdurrahman, A. (2019). Description of meta-analysis of inquiry-based learning of science in improving students‘ inquiry skills. J. Phys.:Conf. Ser., 1157, 022018.
  • Fischer, E., & Hanze, M. (2019). Back from „guide on the side“ to „sage on the stage“? Effects of teacher-quided and student-activating teaching methods on student learning in higher education. International Journal of Educational Research, 95, 26-35.
  • Fraenkel, J. R., & Wallen, N. E. (2006). How to design and evaluate research in education (Sixth edition). Boston: McGraw-Hill.
  • Gay, L. R., & Airasian, P. (2000). Educational research: Competencies for analysis and application. New Jersey: Prentice-Hall Inc.
  • Glesne, C. (2012). Nitel araştırmaya giriş. A. Ersoy ve P. Yalçınoğlu (Çev. Ed.). Ankara: Anı.
  • Harrison, A. G., & Treagust, D. F. (2001). Conceptual change using multiple interpretive perspectives: Two case studies in secondary school chemistry. Instructional Science, 29, 45–85.
  • Hewson, M. G., & Hewson, P. W. (2003). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 40, 86-98.
  • Hrepic, Z. (2002). Identifying students’ mental models of sound propagation (Unpublished Master’s thesis). Kansas State University, Manhattan.
  • Hwang, G. J., Chiu, L. Y., & Chen, C. H. (2015). A contextual game-based learning approach to improving students’ inquiry-based learning performance in social studies courses. Computers & Education, 81, 13-25.
  • Johnson, B. R., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14-26.
  • Johnson, R. B., & Christensen, L. B. (2019). Educational Research (7th ed.). Los Angeles: Sage.
  • Kalaycı, Ş. (2005). SPSS uygulamalı çok değişkenli istatistik teknikleri. Ankara: Asil Yayın Dağıtım.
  • Kang, J., & Keinonen, T. (2018). The effect of student-centered approaches on students’ interest and achievement in science: Relevant topic-based, open and guided inquiry-based and discussion-based approaches. Research in Science Education, 48, 865-885.
  • Karamustafaoğlu, S. (2003). Maddenin iç yapısına yolculuk ünitesi ile ilgili basit araç- gereçlere dayalı rehber materyal geliştirilmesi ve öğretim sürecindeki etkililiği (Yayımlanmamış doktora tezi). Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Katrancı, Y., & Şengül, S. (2020). Ortaokul öğrencilerinin matematiğe yönelik sorgulayıcı öğrenme becerilerinin problem çözmeye yönelik sorgulama, değerlendirme, nedenleme ve yansıtıcı düşünme becerileri açısından değerlendirilmesi. Eğitim ve Bilim, 45(201), 55-78.
  • Katsarova, K., & Raykova, Z. (2019). An opportunity to study mechanical waves by the use of inquiry methods. AIP Conference Proceedings, 2075(1), 180019.
  • Kidman, G., & Casinader, N. (2017). Inquiry-based teaching and learning across disciplines. UK: Palgrave Mcmillan.
  • Kotrlik, J. W., & Williams, H. A. (2003). The incorporation of effect size in information technology, learning, and performance research. Information Technology, Learning and Performance Journal, 21(1), 1-7.
  • Krahenbuhl, K. S. (2016). Student-centered education and constructivism: Challenges, concerns, and clarity for teachers. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 89(3), 97-105.
  • Krippendorff, K. (2004). Content analysis: An introduction to its methodology (Second Edition). USA: Sage.
  • Kuter, S., & Ozer, B. (2020). Student teachers’ experiences of constructivism in a theoretical course built on inquiry-based learning. Journal of Qualitative Research in Education, 8(1), 135-155.
  • Laipply, R. S. (2004). A case study of self-efficacy and attitudes toward science in an inquiry-based biology laboratory (Unpublished doctoral thesis). Akron University, United States.
  • Lederman, N. G., Lederman, J. S., & Antink, A. (2013). Nature of science and scientific inquiry as contexts for the learning of science and achievement of scientific literacy. International Journal of Education in Mathematics, Science and Technology, 1(3), 138-147.
  • Lederman, J. S., Lederman, N. G., Bartels, S., & Jimenez, J. (2019). An international collaborative investigation of beginning seventh grade students’ understandings of scientific inquiry: Establishing a baseline. Journal of Research in Science Teaching, 56, 488-515.
  • Lim, B. R. (2001). Guidelines for designing inquiry-based learning on the web: Online professional development of educators (Unpublished doctoral thesis). Indiana University, United States.
  • Linder, C. J., & Erickson, G. L. (1989). A study of tertiary physics students’ conceptualizations of sound. International Journal of Science Education, 11, 491-501.
  • Llewellyn, D. (2002). Inquire within implementing inquiry-based science standarts. California: Corwin Press.
  • Lodico, M. G., Spaulding, D. T., & Voegtle, K. H. (2010). Methods in educational research: From theory to practice (Vol. 28). John Wiley & Sons.
  • MacKenzie, T. (2016). Dive into inquiry. Irvine, California: EdTechTeam.
  • Maurines, L. (1992). Spontaneous reasoning on the propagation of visible mechanical signals. International Journal of Science Education, 14, 279-293.
  • McDermott L. C., & Redish E. F. (1999). RL-PER1: Resource Letter on Physics Education Research. Am. J. Phys. 67(9), 755-767.
  • McConney, A., Oliver, M. C., Woods-McConney, A., Schibeci, R., & Maor, D. (2014). Inquiry, engagement, and literacy in science: A retrospective, cross-national analysis using PISA 2006. Science Education, 98(6), 963-980.
  • Merriam, S. B. (1988). Case study research in education: A qualitative approach. San Francisco: Jossey- Bass.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (Second Edition). California: Sage.
  • Milli Eğitim Bakanlığı. (2013). Ortaöğretim Fizik Dersi Öğretim Programı. Ankara: Talim ve Terbiye Kurulu Başkanlığı.
  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction-what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 47(4), 474-496.
  • National Academy of Sciences [NAS]. (1997). Science for all children. A guide to improving elementary science education in your school district. Washington, D.C.: National Academy Press.
  • Neuendorf, K. A. (2002). The content analysis guide book (Second Edition). USA: Sage.
  • Ormancı, Ü., & Çepni, S. (2019). Rehberli Araştırma-sorgulama yaklaşımına uygun web destekli fen materyali geliştirilmesi: Kemikler. Araştırma Temelli Etkinlik Dergisi, 9(2), 96-108.
  • Özdemir, Y. G. (2015). Onuncu sınıf dalgalar konusunun sosyal yapılandırmacı kuram temelli öğretiminde farklı etkinliklerin uygulama sırasının kavramsal ve duyuşsal değişime etkisi (Yayımlanmamış doktora tezi). Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir.
  • Özdemir, Y. G., & Kocakülah, S. (2016). Mekanik dalgaların öğretiminde kullanılan farklı etkinliklerin uygulanma sırasının kavramsal değişime etkisi. Eğitim ve Öğretim Araştırmaları Dergisi, 5(3), 150-163.
  • Özsevgeç, T., Çepni, S., & Özsevgeç, L. C. (2006). 5E modelinin kavram yanılgılarını gidermedeki etkililiği: Kuvvet-hareket örneği. VII. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Ankara.
  • Öztürk, S. (2014). Lise-1 düzeyindeki öğrencilerin modsal betimlemeleri tanıyıp öğrenme amaçlı yazmada kullanmalarının Fizik dersi dalgalar ünitesindeki akademik başarıya etkisi (Yayımlanmamış yüksek lisans tezi). Atatürk Üniversitesi, Eğitim Bilimleri Enstitüsü, Erzurum.
  • Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., & Ralle, B. The ChiK Project Group (2006). “Chemie im kontext”: A symbiotic implementation of a context-based teaching and learning approach. International Journal of Science Education, 28(9), 1041–1062.
  • Park, J., & Lee, L. (2004). Analysing congnitive or non-cognitive factors involved in the process of physics problem-solving in an everyday context. International Journal of Science Education, 26(13), 1577-1595.
  • Patton, M. Q. (1990). Qualitative evaluation and research methods (2. ed.). Newbury Park, CA: Sage.
  • Pedaste, M., Maeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47-61.
  • Perkins, D. N. (1999). The many faces of constructivism. Educational Leadership, 57(3), 6-11.
  • Perry, V. R., & Richardson, C. P. (2001). The new Mexico tech master of science teaching program: An exemplary model of inquiry-based learning. 31st ASEE/IEEE Frontiers in Education Conference, Reno.
  • Reid, N., & Skryabina, E. A. (2002). Attitudes towards physics. Research in Science and Technological Education, 20(1), 67-81.
  • Russo, A., & Adorno, D. P. (2018). An inquiry-based learning path to introduce modern physics in high-school. J. Phys.: Conf. Ser., 1076, 012007.
  • Sabourin, J., Mott, B., & Lester, J. (2013). Discovering behavior patterns of self-regulated learners in an inquiry-based learning environment. In International Conference on Artificial Intelligence in Education (pp. 209-218). Springer, Berlin, Heidelberg.
  • Sağdıç, M. (2018). Rehberli sorgulama öğretim modeline göre fen öğretiminin ortaokul öğrencilerin üzerindeki etkisinin incelenmesi: Kuvvet ve enerji ünitesi örneği (Yayımlanmamış yüksek lisans tezi). Van Yüzüncü Yıl Üniversitesi, Eğitim Bilimleri Enstitüsü, Van.
  • Saka, A., & Akdeni̇z, A. R. (2006). Genetik konusunda bilgisayar destekli materyal geliştirilmesi ve 5e modeline göre uygulanması. The Turkish Online Journal of Educational Technology, 5(1), 14.
  • Sari, U., & Guven, G. B. (2013). The effect of interactive whiteboard suppoted inquiry-based learning on achievement and motivation in physics and views of prospective teachers toward the instruction. Necatibey Faculty of Education Journal of Science and Mathematics Education, 7(2), 110-143.
  • Schofield, J. W. (1990). Increasing the generalizability of qualitative research. W. W. Eisner & A. Peshkin (ED.). Qualitative inquiry in education: The continuing debate (pp.201-232). New York: Teachers College Press.
  • Sheldrake, R., Mujtaba, T., & Reiss, M. J. (2019). Students’ changing attitudes and aspirations towards physics during secondary school. Research in Science Education, 49, 1809-1834.
  • Shi, W. Z., Ma, L., & Wang, J. (2020). Effects of inquiry-based teaching on Chinese university students’ epistemologies about experimental physics and learning performance. Journal of Baltic Science Education, 19(2), 289-297.
  • Shih, J. L., Chuang, C. W., & Hwang, G. J. (2010). An inquiry-based mobile learning approach to enhancing social science learning effectiveness. Educational Technology & Society, 13(4), 50-62.
  • Sözbilir, M., Sadi, S., Kutu, H., & Yıldırım, A. (2007). Kimya eğitiminde içeriğe/bağlama dayalı (context-based) öğretim yaklaşımı ve dünyadaki uygulamaları. I. Ulusal Kimya Eğitimi Kongresi, sf. 108.
  • Stephen, U. A. S. (2015). Problems of improvising instructional materials for the teaching and learning of physics in akwa ibom state secondary schools: Nigeria. British Journal of Education, 3(3), 27-35.
  • Syifahayu. (2017). Inquiry-based integrated science education: Implementation of local content “soil washing” project to improve junior high school students’ environmental literacy. J. Phys.: Conf. Ser., 812, 012082.
  • Taasoobshirazi, G., & Carr, M. (2008). A review and critique of context-based physics instruction and assessment. Educational Research Review, 3, 155-167.
  • Tan, R. M., Yangco, R. T., & Que, E. N. (2020). Students’ conceptual understanding and science process skills in an inquiry-based flipped classroom environment. Malaysian Journal of Learning & Instruction, 17(1), 159-184.
  • Tatar, N. (2006). İlköğretim fen eğitiminde araştırmaya dayalı öğrenme yaklaşımının bilimsel süreç becerilerine, akademik başarıya ve tutuma etkisi (Yayımlanmamış doktora tezi). Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Teddlie, C., & Tashakkori, A. (2015). Karma yöntem araştırmalarının temelleri (Y. Dede & S. B. Demir, Çev.). Ankara: Anı.
  • Tekbıyık, A. (2010). Bağlam temelli yaklaşımla ortaöğretim 9. sınıf enerji ünitesine yönelik 5E modeline uygun ders materyallerinin geliştirilmesi (Yayımlanmamış doktora tezi). Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Tezbaşaran, A. A. (2008). Likert tipi ölçek geliştirme kılavuzu (3. Baskı). Ankara: Türk Psikologları derneği.
  • Thier, H. D., & Daviss, B. (2001). Developing inquiry-based science materials. A guide for educators. Newyork: Teachers College Press.
  • Turnip, B., Wahyuni, I., & Tanjung, Y. I. (2016). The effect of inquiry training learning model based on just in time teaching for problem solving skill. Journal of Education and Practice, 7(15), 177-181.
  • Uum, M. S. J., Verhoeff, R. P., & Peeters, M. (2016). Inquiry-based science education: towards a pedagogical framework for primary school teachers. International Journal of Science Education, 38(3), 450-469.
  • Ural, A., & Kılıç, İ. (2005). Bliimsel araştırma süreci ve SPSS ile veri analizi. Ankara: Detay.
  • Wenk, L. (2000). Improving science learning: Inquiry-based and traditional first-year college science curricula (Unpublished doctoral thesis). Massachusetts University, Boston.
  • Westbroek, H. B. (2005). Characteristics of meaningful chemistry education, the case of water quality (Unpublished doctoral thesis). Utrecht University, Utrecht, The Netherlands.
  • Whitelegg, E., & Edwards, C. (2001). Beyond the laboratory: learning physics using real-life contexts. In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komorec, A. Kross, & P. Reiska. (Ed.), Research in science education: past, present, and future (pp. 337-342). Dordrecht: Kluwer Academic.
  • White, S., & Tyler, J. (2015). Who’s teaching what in high school physics?. The Physics Teachers, 53(3), 155-157.
  • Wilder, M., & Shuttleworth, P. (2005). Cell inquiry: A 5E learning cycle lesson. Science Activities, 41(4), 37-43.
  • Windschitl, M. (2003). Supporting the development of science inquiry skills with special classes of software. Educational Technology, Research and Development, 48(2), 81–95.
  • Wise, K. C. (2006). Can you hear them now? Investigating radio waves. Science Activities, 43(3), 23-30.
  • Wittmann, M. C. (2002). The object coordination class applied to wavepulses: Analysing student reasoning in wave physics. International Journal of Science Education, 24(1), 97-118.
  • Wood, W. B. (2003). Inquiry-based undergraduate teaching in life sciences at large research universities: A perspective on the boyer commision report. Cell Biology Education, 2, 112-116.
  • Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34(6), 806-838.
  • Wu, H. K., & Krajcik, J. S. (2006). Inscriptional practices in two inquiry-based classrooms: A case study of seventh graders’ use of data tables and graphs. Journal of Research in Science Teaching, 43(1), 63-95.
  • Wu, H. K., & Hsieh, C. E. (2006). Developing sixth graders’ inquiry skills to construct explanations in inquiry-based learning environments. International Journal of Science Education, 28(15), 1289-1313.
  • Yager, R. (1991). The constructivist learning model, towards real reform in science education. The Science Teacher, 58, 6.
  • Yalçın, Y. (2008). Su dalgaları konusunun öğretiminde işbirlikli öğrenme yönteminin öğrenci başarısına etkisi (Yayımlanmamış yüksek lisans tezi). Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.
  • Yaşar, Ş. (1998). Yapısalcı kuram ve öğrenme-öğretme süreci. Anadolu Üniversitesi Eğitim Fakültesi Dergisi, 8(1-2), 68-75.
  • Yıldırım, A. (1999). Nitel araştırma yöntemlerinin temel özellikleri ve eğitim araştırmalarındaki yeri ve önemi. Eğitim ve Bilim, 23(112), 7-17.
  • Yıldırım, A., & Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri (11. Baskı). Ankara: Seçkin.
  • Yin, R. (1994). Case study research design and methods (Second Edition). California: Sage.
There are 126 citations in total.

Details

Primary Language English
Subjects Studies on Education
Journal Section Article
Authors

Sevim Bezen 0000-0002-0304-5314

Celal Bayrak

Publication Date October 28, 2020
Submission Date January 17, 2020
Published in Issue Year 2020 Volume: 49 Issue: 2

Cite

APA Bezen, S., & Bayrak, C. (2020). Determining Students’ Attitudes and Views Using an Inquiry-Based Learning Approach. Cukurova University Faculty of Education Journal, 49(2), 555-599. https://doi.org/10.14812/cuefd.676679

Copyright © 2011

Cukurova University Faculty of Education

All rights reserved