Research Article
BibTex RIS Cite

Investigation of Sediment Deposition in Dam Reservoirs

Year 2021, , 869 - 878, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1040334

Abstract

The goal of this study is to investigate the water storage capacity changes in Geographic Information System (GIS) environment due to sedimentation in Kozan Dam Reservoir by examining the local map of the reservoir area and the bathymetric measurements in 2014 of the reservoir. Kozan Dam is operational since 1972 and is located in Lower Ceyhan River Basin in Turkey. Reservoir storage capacity loss is estimated by using GIS tools in digital environment and found as %88.7, %7.5 and %6.5 at minimum, normal and maximum operation level of the reservoir respectively. The need for rehabilitation has arisen in Kozan Irrigation Project in time. In terms of efficient use of water, it is necessary to monitor the amount of water stored in Kozan Dam Reservoir which is used as a water resource of the irrigation project in terms of providing expected performance.

References

  • 1. Cross, B.K., Moore, B.C., 2014. Lake and Reservoir Volume: Hydroacoustic Survey Resolution and Accuracy. Lake and Reservoir Management, 30(4), 405-411. DOI: 10.1080/10402381.2014.960115.
  • 2. Popielarczyk, D., Templin, T., 2014. Application of Integrated GNSS/Hydroacoustic Measurements and GIS Geodatabase Models for Bottom Analysis of Lake Hancza: the Deepest Inland Reservoir in Poland. Pure Appl. Geophys, 171, 997–1011.
  • 3. Borowiak, D., Nowiński, K., Grabowska, K., 2016. A New Bathymetric Survey of the Suwałki Landscape Park Lakes, Limnol. Rev. 16(4), 185–197.
  • 4. Olushola, S.O., Ehigiator-Irughe, R., 2017. Bathymetric and Volumetric Analysis of Jebba (Hydropower) Dam Harnessing its Capability for Multipurpose Use. Nigerian Journal of Environmental Sciences and Technology (NIJEST), 1(1), 111-122.
  • 5. Maxim, A., Adrian, R., Alina-Florina, N., Lucian, G.P., Daniel-Eduard, C., 2017. Comparison of Models and Volumetric Determination for Catusa Lake, Galati. TEHNOMUS-New Technologies and Products in Machine Manufacturing Technologies, 67-71.
  • 6. Muchanga, M., Sichingabula, H.M., Obando, J., Chomba, I., Sikazwe, H., Chisola, M., 2019. Bathymetry of the Makoye Reservoir and its Implications on Water Security for Livestock Within the Catchment. International Journal of Geography and Geology, 8(3), 93-109.
  • 7. Parente, C., Vallario, A., 2019. Interpolation of Single Beam Echo Sounder Data for 3D Bathymetric Model. (IJACSA) International Journal of Advanced Computer Science and Applications, 10(10), 6-13.
  • 8. Stoleriu, C.C., Romanescu, G., Mihu-Pintilie, A., 2019. Using Single-beam Echo-sounder for Assessing the Silting Rate from the Largest Cross-border Reservoir of the Eastern Europe: Stanca-costesti Lake, Romania and Republic of Moldova. Carpathian Journal of Earth and Environmental Sciences, February 2019, 14(1), 83-94.
  • 9. Jagalingam, P., Akshaya, B.J., Hegde, A.V., 2015. Bathymetry Mapping Using Landsat 8 Satellite Imagery. 8th International Conference on Asian and Pacific Coasts (APAC 2015). Procedia Engineering, 116, 560-566.
  • 10. Manessa, M.D.M., Haidar, M., Hastuti, M., Kresnawati, D.K., 2017. Determination of the Best Methodology for Bathymetry Mapping Using Spot 6 Imagery: A Study of 12 Empirical Algorithms. International Journal of Remote Sensing and Earth Sciences, 14(2), 127-136.
  • 11. Pushparaj, J., Hegde, A.V., 2017. Estimation of Bathymetry Along the Coast of Mangaluru using Landsat-8 Imagery. The International Journal of Ocean and Climate Systems, 8(2), 71-83.
  • 12. Akgül, M.A., Dağdeviren, M., Biroğlu, İ., 2018. Satellite-derived Bathymetry Using Multi-temporal Satellite Images. DSİ Technical Bulletin, 127, 14-27 (in Turkish).
  • 13. Duplančić Leder, T., Leder, N., 2020. Optimal Conditions for Satellite Derived Bathymetry (SDB) Case Study of the Adriatic Sea. FIG Working Week 2020, Smart Surveyors for Land and Water Management, Amsterdam, the Netherlands, 10-14 May 2020.
  • 14. Rossi, L., Mammi, I., Pelliccia, F., 2020. UAV-Derived Multispectral Bathymetry. Remote Sensing, 12(23), 3897; doi:10.3390/ rs12233897.
  • 15. Suhari, K. T., Karim, H., Gunawan, P. H., and Purwanto, H., 2017. Small ROV Marine Boat for Bathymetry Surveys of Shallow Waters- Potential Implementation in Malaysia. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W5, 201–208, https://doi.org/ 10.5194/isprs-archives-XLII-4-W5-201-2017, 2017.
  • 16. Acharya, S., Pandey, A., Mishra, S.K., Chaube, U.C., 2016. GIS Based Graphical User Interface for Irrigation Management. Water Science & Technology: Water Supply, 16(6), 1536–1551.
  • 17. Negi, S., Arya, A., Kathota, J.C., Patel, A.N., Singh, V., Garg, J.K., Kalubarme, M.H., 2019. Analysis of Impact of Canal Irrigation on Waterlogged Areas and Environment Using Geo-informatics Technology in Gujarat State, INDIA, International Journal of Environment and Geoinformatics (IJEGEO), 6(2), 172-185. DOI: 10.30897/ijegeo.541714.
  • 18. Akinbobola, A., Okogbue, E.C., Olajire, O.O., 2015. A GIS-based Flood Risk Mapping Along The Niger-Benue River Basin in Nigeria Using Watershed Approach. Ethiopian Journal of Environmental Studies & Management, 8(6), 616-627.
  • 19. Dang, A.T.N., Kumar, L., 2017. Application of Remote Sensing and GIS-based Hydrological Modelling for Flood Risk Analysis: a Case Study of District 8, Ho Chi Minh City, Vietnam. Geomatics, Natural Hazards and Risk, 8(2), 1792-1811, DOI: 10.1080/19475705.2017.1388853.
  • 20. Akgül, M.A., Dağdeviren, M., Ekmekçi, F., Kağnıcıoğlu, N., 2019. Estimation of Water Quality Parameters in Lake Köyceğiz Using Remote Sensing. 10. Ulusal Hidroloji Kongresi, 9-12 Ekim 2019 (in Turkish).
  • 21. Augusto Filho, O., Soares, W., Fernandéz, C.I., 2016. Mapping of the Water Table Levels of Unconfined Aquifers Using Two Interpolation Methods. Journal of Geographic Information System, 8, 480-494.
  • 22. Kisaka, M., Mato, R., 2018. Spatial Variation of Ground water Quality Parameters and its Suitability for Drinking at Makutopora Aquifer, Dodoma Municipality, Tanzania. International Journal of Environment and Geoinformatics (IJEGEO). 5(3):337-.352. DOI: 10.30897/ijegeo.462691.
  • 23. Jolly, J.P., 1982. A Proposed Method for Accurately Calculating Sediment Yields from Reservoir Deposition Volumes, Recent Developments in the Explanation and Prediction of Erosion and Sediment Yield (Proceedings of the Exeter Symposium, July 1982), IAHS Publ.no.137.
  • 24. White, W.R., 1990. Reservoir Sedimentation and Flushing. Hydrology in Mountainous Regions, II-Artificial Reservoirs; Water and Slopes (Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. 194, 129-139.
  • 25. Taruya, H., Fuji, H., 1997. Current Conditions of Reservoir Sedimentation in Irrigation Dams in Japan. JARQ, 31(1), 29-34.
  • 26. Magnuszewski, A., Moran, S., Yu, G., 2010. Modelling Lowland Reservoir Sedimentation Conditions and the Potential Environmental Consequences of Dam Removal: Wloclawek Reservoir, Vistula River, Poland, Sediment Dynamics for a Changing Future (Proceedings of the ICCE Symposium Held at Warsaw University of Life Sciences-SGGW, Poland, 14-18 June 2010). IAHS Publ. 337.
  • 27. Munthali, K.G., Irvine, B.J., Murayama, Y. 2011. Reservoir Sedimentation and Flood Control: Using a Geographical Information System to Estimate Sediment Yield of the Songwe River Watershed in Malawi. Sustainability 2011, 3(1), 254-269; doi:10.3390/su3010254.
  • 28. Onwuegbunam, D.O., M.A. Oyebode, Onwuegbunam N.E., Maikano S., Waziri C.H., 2013. Sedimentation Assessment of a Small Reservoir at Afaka Forest Reserve, Kaduna, Nigeria. Journal of Environment and Earth Science, ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online), 3(9) 183-190.
  • 29. Schleiss, A.J., Franca, M.J., Juez, C., De Cesare, G., 2016. Reservoir Sedimentation. Journal of Hydraulic Research, 54(6), 595-614. DOI: 10.1080/00221686.2016.1225320.
  • 30. Shendge, R.B., Chockalingam, M.P., 2016. Review of Reservoir Sedimentation, Remote Sensing and GIS Technology. International Journal of Innovations in Engineering Research and Technology (IJIERT), 3(6), 45-51.
  • 31. Jansen, L., Sidek, L.M., Jajarmizadeh, M., 2016. Impact of Sedimentation Hazard at Jor Reservoir, Batang Padang Hydroelectric Scheme in Malaysia. International Conference on Advances in Renewable Energy and Technologies (ICARET2016), IOP Conf. Series: Earth and Environmental Science, 32, 012030.
  • 32. Maloi, S.K., Sang, J.K., Raude, J.M., Mutwiwa, U.N., Mati, B.M., Maina, C.W., 2016. Assessment of Sedimentation Status of Ruiru Reservoir, Central Kenya, American Journal of Water Resources, 4(4), 77-82. doi: 10.12691/ajwr-4-4-1.
  • 33. Obialor, C.A., Okeke, O.C., Onunkwo, A.A., Fagorite, V.I., Ehujuo, N.N., 2019. Reservoir Sedimentation: Causes, Effects and Mitigation. International Journal of Advanced Academic Research, Sciences, Technology and Engineering, 5(10), 92-109.
  • 34. Lucian, C.D., Mihu-Pintilie, A., Elena, P.L., Stoleriu, C.C., 2019. 50 Year’s Determination of Reservoir Sedimentation Rate Using Topography Measurements and GIS. Case Study: Strîmtori-Firiza Reservoir, Baia Mare, Romania. International Scientific Conference Geobalcanica 2019, 591-596, DOI: 10.18509/GBP.2019.69.
  • 35. Výleta, R., Valent, P., Danáčová, Z., 2020. Monitoring Changes in the Morphology and Storage of a Small Water Reservoir: A Case Study from Vrbovce, Slovakia. Slovak Journal of Civil Engineering, 28(2), 30-35.
  • 36. Uzor-Totty, A.E., Oyegun, C.U., 2020. Spatio-temporal Dynamics of Sediment Yield Across the Imo River Basin SE Nigeria. International Journal of Environment and Geoinformatics (IJEGEO), 7(2), 184-190. DOI: 10.30897/ijegeo.645611.
  • 37. Dadoria, D., Tiwari, H.L., 2016. Assessment of Sedimentation by GIS-A Review. International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869 (O) 2454-4698 (P), 5(3), 124-128.
  • 38. Adongo, T.A., Kyei-Baffour, N., Abagale, F.K., Agyare, W.A., 2019. Assessment of Reservoir Sedimentation of Irrigation Dams in Northern Ghana. Lake and Reservoir Management, 36, 87-105. DOI: 10.1080/10402381.2019.1659461
  • 39. Darama, Y., Selek, Z., Selek, B., Akgül, M.A., Dağdeviren, M., 2019. Determination of Sediment Deposition of Hasanlar Dam Using Bathymetric and Remote Sensing Studies. Natural Hazards, 97, 211–227, DOI: 10.1007/s11069-019-03635-y.
  • 40. Güvel, Ş.P., Yurtal, R., 2020. Investigation of Sedimentation Effects on Seyhan Dam Reservoir, Journal of the Faculty of Engineering and Architecture of Gazi University 35(2) 1015-1025.

Baraj Rezervuarlarında Sediment Birikiminin İncelenmesi

Year 2021, , 869 - 878, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1040334

Abstract

Bu çalışmanın amacı, Kozan Baraj rezervuarında, rezervuar alanının yerel haritası ve 2014 yılı batimetri ölçümlerini kullanarak, katı madde birikiminden kaynaklanan rezervuar depolama kapasitesi değişimini Coğrafi Bilgi Sistemi (CBS) ortamında araştırmaktır. Kozan Barajı 1972’den beri işletme aşamasındadır ve Türkiye'de Aşağı Ceyhan Nehir Havzasında yer almaktadır. Rezervuar depolama kapasitesi kaybı, sayısal ortamda CBS araçları kullanılarak tahmin edilmiş ve rezervuarın minimum, normal ve maksimum işletme seviyelerinde sırasıyla %88,7, %7,5 ve %6,5 olarak bulunmuştur. Kozan Sulama Projesinde zamanla rehabilitasyon ihtiyacı ortaya çıkmıştır. Suyun verimli kullanılması ve beklenen performansın sağlanması açısından, sulama projesinin su kaynağı olarak kullanılan Kozan Barajı’nda depolanan su miktarının izlenmesi gerekmektedir.

References

  • 1. Cross, B.K., Moore, B.C., 2014. Lake and Reservoir Volume: Hydroacoustic Survey Resolution and Accuracy. Lake and Reservoir Management, 30(4), 405-411. DOI: 10.1080/10402381.2014.960115.
  • 2. Popielarczyk, D., Templin, T., 2014. Application of Integrated GNSS/Hydroacoustic Measurements and GIS Geodatabase Models for Bottom Analysis of Lake Hancza: the Deepest Inland Reservoir in Poland. Pure Appl. Geophys, 171, 997–1011.
  • 3. Borowiak, D., Nowiński, K., Grabowska, K., 2016. A New Bathymetric Survey of the Suwałki Landscape Park Lakes, Limnol. Rev. 16(4), 185–197.
  • 4. Olushola, S.O., Ehigiator-Irughe, R., 2017. Bathymetric and Volumetric Analysis of Jebba (Hydropower) Dam Harnessing its Capability for Multipurpose Use. Nigerian Journal of Environmental Sciences and Technology (NIJEST), 1(1), 111-122.
  • 5. Maxim, A., Adrian, R., Alina-Florina, N., Lucian, G.P., Daniel-Eduard, C., 2017. Comparison of Models and Volumetric Determination for Catusa Lake, Galati. TEHNOMUS-New Technologies and Products in Machine Manufacturing Technologies, 67-71.
  • 6. Muchanga, M., Sichingabula, H.M., Obando, J., Chomba, I., Sikazwe, H., Chisola, M., 2019. Bathymetry of the Makoye Reservoir and its Implications on Water Security for Livestock Within the Catchment. International Journal of Geography and Geology, 8(3), 93-109.
  • 7. Parente, C., Vallario, A., 2019. Interpolation of Single Beam Echo Sounder Data for 3D Bathymetric Model. (IJACSA) International Journal of Advanced Computer Science and Applications, 10(10), 6-13.
  • 8. Stoleriu, C.C., Romanescu, G., Mihu-Pintilie, A., 2019. Using Single-beam Echo-sounder for Assessing the Silting Rate from the Largest Cross-border Reservoir of the Eastern Europe: Stanca-costesti Lake, Romania and Republic of Moldova. Carpathian Journal of Earth and Environmental Sciences, February 2019, 14(1), 83-94.
  • 9. Jagalingam, P., Akshaya, B.J., Hegde, A.V., 2015. Bathymetry Mapping Using Landsat 8 Satellite Imagery. 8th International Conference on Asian and Pacific Coasts (APAC 2015). Procedia Engineering, 116, 560-566.
  • 10. Manessa, M.D.M., Haidar, M., Hastuti, M., Kresnawati, D.K., 2017. Determination of the Best Methodology for Bathymetry Mapping Using Spot 6 Imagery: A Study of 12 Empirical Algorithms. International Journal of Remote Sensing and Earth Sciences, 14(2), 127-136.
  • 11. Pushparaj, J., Hegde, A.V., 2017. Estimation of Bathymetry Along the Coast of Mangaluru using Landsat-8 Imagery. The International Journal of Ocean and Climate Systems, 8(2), 71-83.
  • 12. Akgül, M.A., Dağdeviren, M., Biroğlu, İ., 2018. Satellite-derived Bathymetry Using Multi-temporal Satellite Images. DSİ Technical Bulletin, 127, 14-27 (in Turkish).
  • 13. Duplančić Leder, T., Leder, N., 2020. Optimal Conditions for Satellite Derived Bathymetry (SDB) Case Study of the Adriatic Sea. FIG Working Week 2020, Smart Surveyors for Land and Water Management, Amsterdam, the Netherlands, 10-14 May 2020.
  • 14. Rossi, L., Mammi, I., Pelliccia, F., 2020. UAV-Derived Multispectral Bathymetry. Remote Sensing, 12(23), 3897; doi:10.3390/ rs12233897.
  • 15. Suhari, K. T., Karim, H., Gunawan, P. H., and Purwanto, H., 2017. Small ROV Marine Boat for Bathymetry Surveys of Shallow Waters- Potential Implementation in Malaysia. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W5, 201–208, https://doi.org/ 10.5194/isprs-archives-XLII-4-W5-201-2017, 2017.
  • 16. Acharya, S., Pandey, A., Mishra, S.K., Chaube, U.C., 2016. GIS Based Graphical User Interface for Irrigation Management. Water Science & Technology: Water Supply, 16(6), 1536–1551.
  • 17. Negi, S., Arya, A., Kathota, J.C., Patel, A.N., Singh, V., Garg, J.K., Kalubarme, M.H., 2019. Analysis of Impact of Canal Irrigation on Waterlogged Areas and Environment Using Geo-informatics Technology in Gujarat State, INDIA, International Journal of Environment and Geoinformatics (IJEGEO), 6(2), 172-185. DOI: 10.30897/ijegeo.541714.
  • 18. Akinbobola, A., Okogbue, E.C., Olajire, O.O., 2015. A GIS-based Flood Risk Mapping Along The Niger-Benue River Basin in Nigeria Using Watershed Approach. Ethiopian Journal of Environmental Studies & Management, 8(6), 616-627.
  • 19. Dang, A.T.N., Kumar, L., 2017. Application of Remote Sensing and GIS-based Hydrological Modelling for Flood Risk Analysis: a Case Study of District 8, Ho Chi Minh City, Vietnam. Geomatics, Natural Hazards and Risk, 8(2), 1792-1811, DOI: 10.1080/19475705.2017.1388853.
  • 20. Akgül, M.A., Dağdeviren, M., Ekmekçi, F., Kağnıcıoğlu, N., 2019. Estimation of Water Quality Parameters in Lake Köyceğiz Using Remote Sensing. 10. Ulusal Hidroloji Kongresi, 9-12 Ekim 2019 (in Turkish).
  • 21. Augusto Filho, O., Soares, W., Fernandéz, C.I., 2016. Mapping of the Water Table Levels of Unconfined Aquifers Using Two Interpolation Methods. Journal of Geographic Information System, 8, 480-494.
  • 22. Kisaka, M., Mato, R., 2018. Spatial Variation of Ground water Quality Parameters and its Suitability for Drinking at Makutopora Aquifer, Dodoma Municipality, Tanzania. International Journal of Environment and Geoinformatics (IJEGEO). 5(3):337-.352. DOI: 10.30897/ijegeo.462691.
  • 23. Jolly, J.P., 1982. A Proposed Method for Accurately Calculating Sediment Yields from Reservoir Deposition Volumes, Recent Developments in the Explanation and Prediction of Erosion and Sediment Yield (Proceedings of the Exeter Symposium, July 1982), IAHS Publ.no.137.
  • 24. White, W.R., 1990. Reservoir Sedimentation and Flushing. Hydrology in Mountainous Regions, II-Artificial Reservoirs; Water and Slopes (Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. 194, 129-139.
  • 25. Taruya, H., Fuji, H., 1997. Current Conditions of Reservoir Sedimentation in Irrigation Dams in Japan. JARQ, 31(1), 29-34.
  • 26. Magnuszewski, A., Moran, S., Yu, G., 2010. Modelling Lowland Reservoir Sedimentation Conditions and the Potential Environmental Consequences of Dam Removal: Wloclawek Reservoir, Vistula River, Poland, Sediment Dynamics for a Changing Future (Proceedings of the ICCE Symposium Held at Warsaw University of Life Sciences-SGGW, Poland, 14-18 June 2010). IAHS Publ. 337.
  • 27. Munthali, K.G., Irvine, B.J., Murayama, Y. 2011. Reservoir Sedimentation and Flood Control: Using a Geographical Information System to Estimate Sediment Yield of the Songwe River Watershed in Malawi. Sustainability 2011, 3(1), 254-269; doi:10.3390/su3010254.
  • 28. Onwuegbunam, D.O., M.A. Oyebode, Onwuegbunam N.E., Maikano S., Waziri C.H., 2013. Sedimentation Assessment of a Small Reservoir at Afaka Forest Reserve, Kaduna, Nigeria. Journal of Environment and Earth Science, ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online), 3(9) 183-190.
  • 29. Schleiss, A.J., Franca, M.J., Juez, C., De Cesare, G., 2016. Reservoir Sedimentation. Journal of Hydraulic Research, 54(6), 595-614. DOI: 10.1080/00221686.2016.1225320.
  • 30. Shendge, R.B., Chockalingam, M.P., 2016. Review of Reservoir Sedimentation, Remote Sensing and GIS Technology. International Journal of Innovations in Engineering Research and Technology (IJIERT), 3(6), 45-51.
  • 31. Jansen, L., Sidek, L.M., Jajarmizadeh, M., 2016. Impact of Sedimentation Hazard at Jor Reservoir, Batang Padang Hydroelectric Scheme in Malaysia. International Conference on Advances in Renewable Energy and Technologies (ICARET2016), IOP Conf. Series: Earth and Environmental Science, 32, 012030.
  • 32. Maloi, S.K., Sang, J.K., Raude, J.M., Mutwiwa, U.N., Mati, B.M., Maina, C.W., 2016. Assessment of Sedimentation Status of Ruiru Reservoir, Central Kenya, American Journal of Water Resources, 4(4), 77-82. doi: 10.12691/ajwr-4-4-1.
  • 33. Obialor, C.A., Okeke, O.C., Onunkwo, A.A., Fagorite, V.I., Ehujuo, N.N., 2019. Reservoir Sedimentation: Causes, Effects and Mitigation. International Journal of Advanced Academic Research, Sciences, Technology and Engineering, 5(10), 92-109.
  • 34. Lucian, C.D., Mihu-Pintilie, A., Elena, P.L., Stoleriu, C.C., 2019. 50 Year’s Determination of Reservoir Sedimentation Rate Using Topography Measurements and GIS. Case Study: Strîmtori-Firiza Reservoir, Baia Mare, Romania. International Scientific Conference Geobalcanica 2019, 591-596, DOI: 10.18509/GBP.2019.69.
  • 35. Výleta, R., Valent, P., Danáčová, Z., 2020. Monitoring Changes in the Morphology and Storage of a Small Water Reservoir: A Case Study from Vrbovce, Slovakia. Slovak Journal of Civil Engineering, 28(2), 30-35.
  • 36. Uzor-Totty, A.E., Oyegun, C.U., 2020. Spatio-temporal Dynamics of Sediment Yield Across the Imo River Basin SE Nigeria. International Journal of Environment and Geoinformatics (IJEGEO), 7(2), 184-190. DOI: 10.30897/ijegeo.645611.
  • 37. Dadoria, D., Tiwari, H.L., 2016. Assessment of Sedimentation by GIS-A Review. International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869 (O) 2454-4698 (P), 5(3), 124-128.
  • 38. Adongo, T.A., Kyei-Baffour, N., Abagale, F.K., Agyare, W.A., 2019. Assessment of Reservoir Sedimentation of Irrigation Dams in Northern Ghana. Lake and Reservoir Management, 36, 87-105. DOI: 10.1080/10402381.2019.1659461
  • 39. Darama, Y., Selek, Z., Selek, B., Akgül, M.A., Dağdeviren, M., 2019. Determination of Sediment Deposition of Hasanlar Dam Using Bathymetric and Remote Sensing Studies. Natural Hazards, 97, 211–227, DOI: 10.1007/s11069-019-03635-y.
  • 40. Güvel, Ş.P., Yurtal, R., 2020. Investigation of Sedimentation Effects on Seyhan Dam Reservoir, Journal of the Faculty of Engineering and Architecture of Gazi University 35(2) 1015-1025.
There are 40 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Şerife Pınar Güvel This is me 0000-0002-3175-5938

Publication Date December 29, 2021
Published in Issue Year 2021

Cite

APA Güvel, Ş. P. (2021). Investigation of Sediment Deposition in Dam Reservoirs. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(4), 869-878. https://doi.org/10.21605/cukurovaumfd.1040334