Research Article
BibTex RIS Cite

Investigation of the Effect of Channel Angles and Corner Radius on Deformation in Equal Channel Angular Pressing Method by Finite Element Method

Year 2023, , 859 - 873, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377823

Abstract

The process of subjecting to severe plastic deformation enables the formation of ultra-fine grains in order to enhance the mechanical properties of the material. Equal Channel Angular Pressing (ECAP), which is one of the methods of extreme plastic deformation, is a technique that allows the improvement of mechanical properties by subjecting the material to shear stresses without any change in the material cross-section. The improvement of mechanical properties in materials through this method is dependent on both the process parameters and the optimization of these parameters. In particular, the die angles are of critical importance during the passage of the material through the channel. These angles directly influence the applied force and the amount of deformation that will occur. Predicting the deformation that may occur in the material prior to the start of the experimental process is crucial for the proper progression of the process. In this study, the channel angle, outer corner angle, and inner corner radius value, which are among the most influential parameters on grain size, have been taken into account. The channel angle (Φ) has been set to 900 and 1200, the outer corner angle (ψ) to 00 and 200, and the inner corner radius values to 0, 2, 4, 6, 8, and 10 mm. The contact between the die and the sample is assumed to be frictionless, and the amount of deformation undergone by the sample has been determined, and the required force value has been calculated. According to the obtained data, the highest stress value was observed in the model with Φ=900, ψ=200, and r=0 mm. Increasing the channel angle reduces the force value while also decreasing the amount of deformation. Increasing the inner corner radius value results in significant changes in stress values for the Φ=900 channel angle, but no significant changes were observed for the Φ=1200 channel angle.

References

  • 1. Skiba, J., Kossakowska, J., Kulczyk, M., Pachla, W., Przybysz, S., Smalc-Koziorowska, J., Przybysz, M., 2020. The Impact of Severe Plastic Deformations Obtained By Hydrostatic Extrusion on the Machinability of Ultrafine-Grained AA5083 Alloy. Journal of Manufacturing Processes, 58, 1232-1240.
  • 2. Mishra, B., Mohapatra, S.K., Ranjan, V., Maity, K., 2020. Equal Channel Angular Pressing of The Aluminium Alloy: A Numerical Investigation. Materials Today: Proceedings, 26, 2173-2178.
  • 3. Verlinden, B., 2018. Severe Plastic Deformation of Metals. Metallurgical and Materials Engineering. The Netherlands Press, Amsterdam, 166.
  • 4. Mirzakhani, B., Payandeh, Y., 2015. Combination of Severe Plastic Deformation and Precipitation Hardening Processes Affecting The Mechanical Properties in Al–Mg–Si alloy. Materials & Design, 68, 127-133.
  • 5. Mohapatra, S.K., Mishra, S.B., Joshi, K.K., Pradhan, S., 2019. Effect of the Hot Deformation on Mechanical and Wear Characteristics of the P/M AMC. Materials Today. Proceedings, 18, 5040-5047.
  • 6. Demir, M., Tekin, O., Demir, A., 2020. T6 Yaşlandırma Isıl işlemi Uygulanan Ekstrude AA 7075 Alüminyum Alaşımlarının Mekanik Davranışları. Academic Perspective Procedia, 3, 763-771.
  • 7. Güral, A., Tekeli, S., Aytaç, A., Türkan, M., 2012. Eşit Kanal-Açisal Presleme (Ekap) Yöntemiyle Aşiri Deformasyon Yapilmiş 7075 Alüminyum Alaşiminin Mikroyapisal Karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 27.
  • 8. Roven, H.J., Werenskiold, J.C., 2004. Conventional Light Alloys Towards the Bottom-A Physical Metallurgical Approach. In Proceedings of the Nanomat Conference, Oslo, 32-40.
  • 9. Baysal, E., Koçar, O., Kocaman, E., Köklü, U., 2022. An Overview of Deformation Path Shapes on Equal Channel Angular Pressing. Metals, 12, 1800.
  • 10. Segal, V., 1995. Materials processing by simple shear. Materials Science and Engineering: A, 197, 157-164.
  • 11. Furukawa, M., Horita, Z., Nemoto, M., Valiev, R.Z., Langdon, T.G., 1998. Factors Influencing The Flow and Hardness of Materials with Ultrafine Grain Sizes. Philosophical Magazine A, 78, 203-216.
  • 12. Harsha, R., Kulkarni, V.M., Babu, B.S., 2018. Severe Plastic Deformation-A Review. Materials Today. Proceedings, 5, 22340-22349.
  • 13. Langdon, T., 2008. Processing of Ultrafine-Grained Materials Using Severe Plastic Deformation: Potential for Achieving Exceptional Properties. Revista de Metalurgia, 44, 556-564.
  • 14. Wang, C., Li, F., Chen, B., Yuan, Z., Lu, H., 2012. Severe Plastic Deformation Techniques for Bulk Ultrafine-Grained Materials. Rare Metal Materials and Engineering, 41, 941-946.
  • 15. Valiev, R.Z., Langdon, T.G., 2006. Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement. Progress In Materials Science, 51, 881-981.
  • 16. Shin, D., Kim, Y.-S., Lavernia, E., 2001. Formation of Fine Cementite Precipitates By Static Annealing of Equal-Channel Angular Pressed Low-Carbon Steels. Acta Materialia, 49, 2387-2393.
  • 17. Chang, S.-Y., 2005. Ahn, B.-D., Hong, S.-K., Kamado, S., Kojima, Y., Shin, D.H. Tensile Deformation Characteristics of a Nano-Structured 5083 Al Alloy. Journal of Alloys and Compounds, 386, 197-201.
  • 18. Xu, C., Furukawa, M., Horita, Z., Langdon, T.G., 2004. Severe Plastic Deformation as a Processing Tool for Developing Superplastic Metals. Journal of Alloys and Compounds, 378, 27-34.
  • 19. Valiev, R., Alexandrov, I., Zhu, Y., Lowe, T., 2002. Paradox of Strength and Ductility in Metals Processed by severe Plastic Deformation. Journal of Materials Research, 17, 5-8.
  • 20. Ivanisenko, Y., Wunderlich, R., Valiev, R., Fecht, H.-J., 2003. Annealing Behaviour of Nanostructured Carbon Steel Produced by Severe Plastic Deformation. Scripta Materialia, 49, 947-952.
  • 21. Alkorta, J., Sevillano, J.G., 2003. A Comparison of FEM and Upper-Bound Type Analysis of Equal-Channel Angular Pressing (ECAP). Journal of Materials Processing Technology, 141, 313-318.
  • 22. Koujalagi, M.B., Siddesha, H., 2021. ECAP of Titanium Alloy by Sever Plastic Deformation: A Review. Materials Today: Proceedings, 45, 71-77.
  • 23. Haase, C., Lapovok, R., Ng, H.P., Estrin, Y., 2012. Production of Ti–6Al–4V Billet Through Compaction of Blended Elemental Powders by Equal-Channel Angular Pressing. Materials Science and Engineering: A, 550, 263-272.
  • 24. Li, Z., Cheng, X., 2007. Deformation Temperature and Postdeformation Annealing Effects on Severely Deformed TiNi Alloy by Equal Channel Angular Extrusion. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 14, 533-537.
  • 25. Horita, Z., Fujinami, T., Nemoto, M., Langdon, T., 2001. Improvement of Mechanical Properties for Al Alloys Using Equal-Channel Angular Pressing. Journal of Materials Processing Technology, 117, 288-292.
  • 26. Llorca-Isern, N., Gonzalez, P., Luis-Pérez, C., Laborde, I., 2006. Severe Plastic Deformation of a Commercial Aluminium-Lithium Alloy (AA8090) by Equal Channel Angular Pressing. In Proceedings of the Materials Science Forum, 871-876.
  • 27. Jafarlou, D., Zalnezhad, E., Hassan, M., Ezazi, M., Mardi, N., Hamouda, A., Hamdi, M., Yoon, G., 2016. Severe Plastic Deformation of Tubular AA 6061 via Equal Channel Angular Pressing. Materials & Design, 90, 1124-1135.
  • 28. Jahadi, R., Sedighi, M., Jahed, H., 2014. ECAP Effect on the Micro-Structure and Mechanical Properties of AM30 Magnesium Alloy. Materials Science and Engineering: A, 593, 178-184.
  • 29. Figueiredo, R.B., Langdon, T.G., 2010. Grain Refinement and Mechanical Behavior of a Magnesium Alloy Processed by ECAP. Journal of Materials Science, 45, 4827-4836.
  • 30. Huang, C., Yang, G., Gao, Y., Wu, S., Zhang, Z., 2008. Influence of Processing Temperature on the Microstructures and Tensile Properties of 304L Stainless Steel by ECAP. Materials Science and Engineering: A, 485, 643-650.
  • 31. Fan, Z., Hao, T., Zhao, S., Luo, G., Liu, C., Fang, Q., 2013. The Microstructure and Mechanical Properties of T91 steel Processed by ECAP at Room Temperature. Journal of Nuclear Materials, 434, 417-421.
  • 32. Radhi, H.N., Mohammed, M.T., Aljassani, A.M., 2021. Influence of ECAP Processing on Mechanical and Wear Properties of Brass Alloy. Materials Today. Proceedings, 44, 2399-2402.
  • 33. Suzuki, T., Vinogradov, A., Hashimoto, S., 2004. Strength Enhancement and Deformation Behavior of Gold After Equal-Channel Angular Pressing. Materials Transactions, 45, 2200-2208.
  • 34. Chen, W., Feng, P., Dong, L., Liu, B., Ren, S., Fu, Y., 2018. Experimental and Theoretical Analysis of Microstructural Evolution and Deformation Behaviors of Cuw Composites During Equal Channel Angular Pressing. Materials & Design, 142, 166-176.
  • 35. Maziarz, W., Greger, M., Długosz, P., Dutkiewicz, J., Wójcik, A., Rogal, Ł., Stan-Głowińska, K., Hilser, O., Pastrnak, M., Cizek, L., 2022. Effect of Severe Plastic Deformation Process on Microstructure and Mechanical Properties of AlSi/SiC Composite. Journal of Materials Research and Technology, 17, 948-960.
  • 36. Goussous, S., Xu, W., Xia, K., 2010. Developing Aluminum Nanocomposites via Severe Plastic Deformation. In Proceedings of the Journal of Physics, Conference Series, 240, 012106.
  • 37. Caruso, S., Imbrogno, S., 2021. Finite Element Modelling of Microstructural Changes During Equal Channel Angular Drawing of Pure Aluminium. The International Journal of Advanced Manufacturing Technology, 114, 1487-1495.
  • 38. Özyürek, D., Yıldırım, M., Tunçay, T., Kalyon, A., Yavuzer, B., 2015. Eşit Kanal Açısal Presleme (EKAP) İşlemi ile Şekillendirilen AA7075 Alüminyum Alaşımının Sonlu Elemanlar Yöntemiyle Analizi. Uluslararası Hakemli Mühendislik ve Fen Bilimleri Dergisi, 5, 93-101.
  • 39. Fadhil, A., Alkhfaji, S.S., Ismael, M.K., 2021. Design Parameters for Equal-Channel Angular Pressing (ECAP) via Numerical Approach. In Proceedings of the Journal of Physics: Conference Series, 012103.
  • 40. Nagasekhar, A., Yoon, S., Tick-Hon, Y., Kim, H., 2009. An Experimental Verification of the Finite Element Modelling of Equal Channel Angular Pressing. Computational Materials Science, 46, 347-351.
  • 41. Kapoor, A., Wahid, M.A., Goel, P., Agarwal, K.M., Mohan, U., 2021. 3D FEM Simulation on Deformation and Strain analysis for grain refinement of Mg Alloy passed through ECAP. In Proceedings of the IOP Conference Series, Materials Science and Engineering, 012024.
  • 42. Samsudin, M., Kurniawan, D., Nor, F.M., 2015. Strain Distribution Equal Channel Angular Pressing of Magnesium Alloy at 90 and 120 Corner Angles. Procedia Manufacturing, 2, 230-235.
  • 43. Venkatraman, R., Raghuraman, S., Raj Mohan, R., 2012. Modeling and Analysis on Deformation Behavior for AA 6061 through Equal Channel Angular Pressing Die. In Proceedings of the International Conference on Intelligent Robotics, Automation, and Manufacturing, 520-525.
  • 44. Kaya, H., Uçar, M., Cengiz, A., Samur, R., Özyürek, D., Çalışkan, A., 2014. Novel Molding Technique for ECAP Process and Effects on Hardness of AA7075. Mechanics, 20, 5-10.
  • 45. Bulutsuz, G.A., 2017. Mekanik Özellikleri Geliştirilmiş Biyouyumlu Implant Malzemelerinin Üretiminde Aşırı Plastik Deformasyon Tekniğinin Uygulanma Koşullarının Araştırılması. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 166.
  • 46. Al-Mufadi, F., Djavanroodi, F., 2014. Effect of equal Channel Angular Pressing Process on Impact Property of Pure Copper. International Journal of Mechanical and Mechatronics Engineering, 8, 30-34.
  • 47. Gautam, P.C., Biswas, S., 2021. Effect of ECAP Temperature on the Microstructure, Texture Evolution and Mechanical Properties of Pure Magnesium. Materials Today: Proceedings, 44, 2914-2918.
  • 48. Bayat Asl, Y., Meratian, M., Emamikhah, A., Mokhtari Homami, R., Abbasi, A., 2015. Mechanical Properties and Machinability of 6061 Aluminum Alloy Produced by Equal-Channel Angular Pressing. Proceedings of the Institution of Mechanical Engineers, Part B. Journal of Engineering Manufacture, 229, 1302-1313.
  • 49. Djavanroodi, F., Ebrahimi, M., Rajabifar, B., Akramizadeh, S., 2010. Fatigue Design Factors for ECAPed Materials. Materials Science and Engineering: A, 528, 745-750.
  • 50. Klu, E.E., Song, D., Li, C., Wang, G., Zhou, Z., Gao, B., Sun, J., Ma, A., Jiang, J., 2019. Development of a High Strength Mg-9Li Alloy via Multi-Pass ECAP and Post-Rolling. Metals, 9, 1008.
  • 51. Lee, S., Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z., Langdon, T.G., 1999. Developing Superplastic Properties in an Aluminum Alloy Through Severe Plastic Deformation. Materials Science and Engineering: A, 272, 63-72.
  • 52. Lee, S., Langdon, T.G., 1999. Influence of equal-Channel Angular Pressing on the Superplastic Properties of Commercial Aluminum Alloys. MRS Online Proceedings Library (OPL), 601.
  • 53. Avvari, M., Narendranath, S., Nayaka, H.S., 2014. Effect of Processing Routes on AZ31 Alloy Processed by Severe Plastic Deformation. Procedia Materials Science, 5, 1560-1566.

Eşit Kanallı Açısal Presleme Yönteminde Kanal Açılarının ve İç Köşe Kavisinin Deformasyona Etkisinin Sonlu Elemanlar Metodu ile İncelenmesi

Year 2023, , 859 - 873, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377823

Abstract

Aşırı plastik deformasyona maruz bırakılma işlemi, malzemenin mekanik özelliklerini geliştirmek amacıyla ultra ince tanelerin oluşturulmasına olanak sağlamaktadır. Aşırı plastik deformasyon yöntemlerinden biri olan Eşit Kanallı Açısal Presleme (EKAP) yöntemi de malzeme kesitinde herhangi bir değişiklik olmadan, malzemenin kayma gerilmelerine maruz kalması sonucu mekanik özelliklerin iyileşmesine imkân sağlayan bir yöntemdir. Bu yöntemle malzemelerin mekanik özelliklerin daha da artması hem işlem parametrelerine ve hem de işlem parametrelerinin optimizasyonuna bağlıdır. Özellikle, malzemenin kanal içerisinden geçişi sırasında kalıp açıları kritik öneme sahiptir. Bu açılar, uygulanacak olan kuvvet ve deformasyon miktarı üzerinde doğrudan etkilidir. Deneysel süreç başlamadan malzemede meydana gelebilecek deformasyonu önceden tahmin etmek sürecin doğru ilerlemesi açısından çok önemlidir. Bu çalışmada tane boyutu üzerinde en etkili parametrelerden olan kanal açısı, dış kavis açısı ve iç köşe kavis değeri dikkate alınmıştır. Kanal açısı (Φ) 90o ve 120o, dış kavis açısı (ψ) 0o ve 20o, iç köşe kavis değerleri ise 0, 2, 4, 6, 8, 10 mm olarak alınmıştır. Kalıp ile numune arasındaki temas şekli, sürtünmesiz olarak kabul edilerek numunenin uğradığı deformasyon miktarı tespit edilmiş ve gerekli olan kuvvet değeri hesaplanmıştır. Elde edilen verilere göre en yüksek gerilme değeri Φ=90o, ψ=20o ve r=0 mm olan modelde gözlenmiştir. Kanal açısının artırılması kuvvet değerini azaltırken deformasyon miktarını da düşürmektedir. İç köşe kavis değerinin artması Φ=90o kanal açısı için gerilme değerlerinde önemli değişiklikler göstermesine rağmen Φ=120o kanal açısı için kayda değer değişiklikler gözlenmemiştir.

References

  • 1. Skiba, J., Kossakowska, J., Kulczyk, M., Pachla, W., Przybysz, S., Smalc-Koziorowska, J., Przybysz, M., 2020. The Impact of Severe Plastic Deformations Obtained By Hydrostatic Extrusion on the Machinability of Ultrafine-Grained AA5083 Alloy. Journal of Manufacturing Processes, 58, 1232-1240.
  • 2. Mishra, B., Mohapatra, S.K., Ranjan, V., Maity, K., 2020. Equal Channel Angular Pressing of The Aluminium Alloy: A Numerical Investigation. Materials Today: Proceedings, 26, 2173-2178.
  • 3. Verlinden, B., 2018. Severe Plastic Deformation of Metals. Metallurgical and Materials Engineering. The Netherlands Press, Amsterdam, 166.
  • 4. Mirzakhani, B., Payandeh, Y., 2015. Combination of Severe Plastic Deformation and Precipitation Hardening Processes Affecting The Mechanical Properties in Al–Mg–Si alloy. Materials & Design, 68, 127-133.
  • 5. Mohapatra, S.K., Mishra, S.B., Joshi, K.K., Pradhan, S., 2019. Effect of the Hot Deformation on Mechanical and Wear Characteristics of the P/M AMC. Materials Today. Proceedings, 18, 5040-5047.
  • 6. Demir, M., Tekin, O., Demir, A., 2020. T6 Yaşlandırma Isıl işlemi Uygulanan Ekstrude AA 7075 Alüminyum Alaşımlarının Mekanik Davranışları. Academic Perspective Procedia, 3, 763-771.
  • 7. Güral, A., Tekeli, S., Aytaç, A., Türkan, M., 2012. Eşit Kanal-Açisal Presleme (Ekap) Yöntemiyle Aşiri Deformasyon Yapilmiş 7075 Alüminyum Alaşiminin Mikroyapisal Karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 27.
  • 8. Roven, H.J., Werenskiold, J.C., 2004. Conventional Light Alloys Towards the Bottom-A Physical Metallurgical Approach. In Proceedings of the Nanomat Conference, Oslo, 32-40.
  • 9. Baysal, E., Koçar, O., Kocaman, E., Köklü, U., 2022. An Overview of Deformation Path Shapes on Equal Channel Angular Pressing. Metals, 12, 1800.
  • 10. Segal, V., 1995. Materials processing by simple shear. Materials Science and Engineering: A, 197, 157-164.
  • 11. Furukawa, M., Horita, Z., Nemoto, M., Valiev, R.Z., Langdon, T.G., 1998. Factors Influencing The Flow and Hardness of Materials with Ultrafine Grain Sizes. Philosophical Magazine A, 78, 203-216.
  • 12. Harsha, R., Kulkarni, V.M., Babu, B.S., 2018. Severe Plastic Deformation-A Review. Materials Today. Proceedings, 5, 22340-22349.
  • 13. Langdon, T., 2008. Processing of Ultrafine-Grained Materials Using Severe Plastic Deformation: Potential for Achieving Exceptional Properties. Revista de Metalurgia, 44, 556-564.
  • 14. Wang, C., Li, F., Chen, B., Yuan, Z., Lu, H., 2012. Severe Plastic Deformation Techniques for Bulk Ultrafine-Grained Materials. Rare Metal Materials and Engineering, 41, 941-946.
  • 15. Valiev, R.Z., Langdon, T.G., 2006. Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement. Progress In Materials Science, 51, 881-981.
  • 16. Shin, D., Kim, Y.-S., Lavernia, E., 2001. Formation of Fine Cementite Precipitates By Static Annealing of Equal-Channel Angular Pressed Low-Carbon Steels. Acta Materialia, 49, 2387-2393.
  • 17. Chang, S.-Y., 2005. Ahn, B.-D., Hong, S.-K., Kamado, S., Kojima, Y., Shin, D.H. Tensile Deformation Characteristics of a Nano-Structured 5083 Al Alloy. Journal of Alloys and Compounds, 386, 197-201.
  • 18. Xu, C., Furukawa, M., Horita, Z., Langdon, T.G., 2004. Severe Plastic Deformation as a Processing Tool for Developing Superplastic Metals. Journal of Alloys and Compounds, 378, 27-34.
  • 19. Valiev, R., Alexandrov, I., Zhu, Y., Lowe, T., 2002. Paradox of Strength and Ductility in Metals Processed by severe Plastic Deformation. Journal of Materials Research, 17, 5-8.
  • 20. Ivanisenko, Y., Wunderlich, R., Valiev, R., Fecht, H.-J., 2003. Annealing Behaviour of Nanostructured Carbon Steel Produced by Severe Plastic Deformation. Scripta Materialia, 49, 947-952.
  • 21. Alkorta, J., Sevillano, J.G., 2003. A Comparison of FEM and Upper-Bound Type Analysis of Equal-Channel Angular Pressing (ECAP). Journal of Materials Processing Technology, 141, 313-318.
  • 22. Koujalagi, M.B., Siddesha, H., 2021. ECAP of Titanium Alloy by Sever Plastic Deformation: A Review. Materials Today: Proceedings, 45, 71-77.
  • 23. Haase, C., Lapovok, R., Ng, H.P., Estrin, Y., 2012. Production of Ti–6Al–4V Billet Through Compaction of Blended Elemental Powders by Equal-Channel Angular Pressing. Materials Science and Engineering: A, 550, 263-272.
  • 24. Li, Z., Cheng, X., 2007. Deformation Temperature and Postdeformation Annealing Effects on Severely Deformed TiNi Alloy by Equal Channel Angular Extrusion. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 14, 533-537.
  • 25. Horita, Z., Fujinami, T., Nemoto, M., Langdon, T., 2001. Improvement of Mechanical Properties for Al Alloys Using Equal-Channel Angular Pressing. Journal of Materials Processing Technology, 117, 288-292.
  • 26. Llorca-Isern, N., Gonzalez, P., Luis-Pérez, C., Laborde, I., 2006. Severe Plastic Deformation of a Commercial Aluminium-Lithium Alloy (AA8090) by Equal Channel Angular Pressing. In Proceedings of the Materials Science Forum, 871-876.
  • 27. Jafarlou, D., Zalnezhad, E., Hassan, M., Ezazi, M., Mardi, N., Hamouda, A., Hamdi, M., Yoon, G., 2016. Severe Plastic Deformation of Tubular AA 6061 via Equal Channel Angular Pressing. Materials & Design, 90, 1124-1135.
  • 28. Jahadi, R., Sedighi, M., Jahed, H., 2014. ECAP Effect on the Micro-Structure and Mechanical Properties of AM30 Magnesium Alloy. Materials Science and Engineering: A, 593, 178-184.
  • 29. Figueiredo, R.B., Langdon, T.G., 2010. Grain Refinement and Mechanical Behavior of a Magnesium Alloy Processed by ECAP. Journal of Materials Science, 45, 4827-4836.
  • 30. Huang, C., Yang, G., Gao, Y., Wu, S., Zhang, Z., 2008. Influence of Processing Temperature on the Microstructures and Tensile Properties of 304L Stainless Steel by ECAP. Materials Science and Engineering: A, 485, 643-650.
  • 31. Fan, Z., Hao, T., Zhao, S., Luo, G., Liu, C., Fang, Q., 2013. The Microstructure and Mechanical Properties of T91 steel Processed by ECAP at Room Temperature. Journal of Nuclear Materials, 434, 417-421.
  • 32. Radhi, H.N., Mohammed, M.T., Aljassani, A.M., 2021. Influence of ECAP Processing on Mechanical and Wear Properties of Brass Alloy. Materials Today. Proceedings, 44, 2399-2402.
  • 33. Suzuki, T., Vinogradov, A., Hashimoto, S., 2004. Strength Enhancement and Deformation Behavior of Gold After Equal-Channel Angular Pressing. Materials Transactions, 45, 2200-2208.
  • 34. Chen, W., Feng, P., Dong, L., Liu, B., Ren, S., Fu, Y., 2018. Experimental and Theoretical Analysis of Microstructural Evolution and Deformation Behaviors of Cuw Composites During Equal Channel Angular Pressing. Materials & Design, 142, 166-176.
  • 35. Maziarz, W., Greger, M., Długosz, P., Dutkiewicz, J., Wójcik, A., Rogal, Ł., Stan-Głowińska, K., Hilser, O., Pastrnak, M., Cizek, L., 2022. Effect of Severe Plastic Deformation Process on Microstructure and Mechanical Properties of AlSi/SiC Composite. Journal of Materials Research and Technology, 17, 948-960.
  • 36. Goussous, S., Xu, W., Xia, K., 2010. Developing Aluminum Nanocomposites via Severe Plastic Deformation. In Proceedings of the Journal of Physics, Conference Series, 240, 012106.
  • 37. Caruso, S., Imbrogno, S., 2021. Finite Element Modelling of Microstructural Changes During Equal Channel Angular Drawing of Pure Aluminium. The International Journal of Advanced Manufacturing Technology, 114, 1487-1495.
  • 38. Özyürek, D., Yıldırım, M., Tunçay, T., Kalyon, A., Yavuzer, B., 2015. Eşit Kanal Açısal Presleme (EKAP) İşlemi ile Şekillendirilen AA7075 Alüminyum Alaşımının Sonlu Elemanlar Yöntemiyle Analizi. Uluslararası Hakemli Mühendislik ve Fen Bilimleri Dergisi, 5, 93-101.
  • 39. Fadhil, A., Alkhfaji, S.S., Ismael, M.K., 2021. Design Parameters for Equal-Channel Angular Pressing (ECAP) via Numerical Approach. In Proceedings of the Journal of Physics: Conference Series, 012103.
  • 40. Nagasekhar, A., Yoon, S., Tick-Hon, Y., Kim, H., 2009. An Experimental Verification of the Finite Element Modelling of Equal Channel Angular Pressing. Computational Materials Science, 46, 347-351.
  • 41. Kapoor, A., Wahid, M.A., Goel, P., Agarwal, K.M., Mohan, U., 2021. 3D FEM Simulation on Deformation and Strain analysis for grain refinement of Mg Alloy passed through ECAP. In Proceedings of the IOP Conference Series, Materials Science and Engineering, 012024.
  • 42. Samsudin, M., Kurniawan, D., Nor, F.M., 2015. Strain Distribution Equal Channel Angular Pressing of Magnesium Alloy at 90 and 120 Corner Angles. Procedia Manufacturing, 2, 230-235.
  • 43. Venkatraman, R., Raghuraman, S., Raj Mohan, R., 2012. Modeling and Analysis on Deformation Behavior for AA 6061 through Equal Channel Angular Pressing Die. In Proceedings of the International Conference on Intelligent Robotics, Automation, and Manufacturing, 520-525.
  • 44. Kaya, H., Uçar, M., Cengiz, A., Samur, R., Özyürek, D., Çalışkan, A., 2014. Novel Molding Technique for ECAP Process and Effects on Hardness of AA7075. Mechanics, 20, 5-10.
  • 45. Bulutsuz, G.A., 2017. Mekanik Özellikleri Geliştirilmiş Biyouyumlu Implant Malzemelerinin Üretiminde Aşırı Plastik Deformasyon Tekniğinin Uygulanma Koşullarının Araştırılması. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 166.
  • 46. Al-Mufadi, F., Djavanroodi, F., 2014. Effect of equal Channel Angular Pressing Process on Impact Property of Pure Copper. International Journal of Mechanical and Mechatronics Engineering, 8, 30-34.
  • 47. Gautam, P.C., Biswas, S., 2021. Effect of ECAP Temperature on the Microstructure, Texture Evolution and Mechanical Properties of Pure Magnesium. Materials Today: Proceedings, 44, 2914-2918.
  • 48. Bayat Asl, Y., Meratian, M., Emamikhah, A., Mokhtari Homami, R., Abbasi, A., 2015. Mechanical Properties and Machinability of 6061 Aluminum Alloy Produced by Equal-Channel Angular Pressing. Proceedings of the Institution of Mechanical Engineers, Part B. Journal of Engineering Manufacture, 229, 1302-1313.
  • 49. Djavanroodi, F., Ebrahimi, M., Rajabifar, B., Akramizadeh, S., 2010. Fatigue Design Factors for ECAPed Materials. Materials Science and Engineering: A, 528, 745-750.
  • 50. Klu, E.E., Song, D., Li, C., Wang, G., Zhou, Z., Gao, B., Sun, J., Ma, A., Jiang, J., 2019. Development of a High Strength Mg-9Li Alloy via Multi-Pass ECAP and Post-Rolling. Metals, 9, 1008.
  • 51. Lee, S., Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z., Langdon, T.G., 1999. Developing Superplastic Properties in an Aluminum Alloy Through Severe Plastic Deformation. Materials Science and Engineering: A, 272, 63-72.
  • 52. Lee, S., Langdon, T.G., 1999. Influence of equal-Channel Angular Pressing on the Superplastic Properties of Commercial Aluminum Alloys. MRS Online Proceedings Library (OPL), 601.
  • 53. Avvari, M., Narendranath, S., Nayaka, H.S., 2014. Effect of Processing Routes on AZ31 Alloy Processed by Severe Plastic Deformation. Procedia Materials Science, 5, 1560-1566.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Erhan Baysal 0000-0002-2767-8722

Oğuz Koçar 0000-0002-1928-4301

Nergizhan Anaç 0000-0001-6738-9741

Ferudun Darıcı 0000-0003-2036-6387

Publication Date October 18, 2023
Published in Issue Year 2023

Cite

APA Baysal, E., Koçar, O., Anaç, N., Darıcı, F. (2023). Eşit Kanallı Açısal Presleme Yönteminde Kanal Açılarının ve İç Köşe Kavisinin Deformasyona Etkisinin Sonlu Elemanlar Metodu ile İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(3), 859-873. https://doi.org/10.21605/cukurovaumfd.1377823