Research Article
BibTex RIS Cite

An Evidential Mask Transformer for Left Atrium Segmentation

Year 2024, , 639 - 646, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1560046

Abstract

The segmentation of the left atrium (LA) is required to calculate the clinical parameters of the LA, to identify diseases related to its remodeling. Generally, convolutional networks have been used for this task. However, their performance may be limited as a result of the use of local convolution operations for feature extraction. Also, such models usually need extra steps to provide uncertainty maps such as multiple forward passes for Monte Carlo dropouts or training multiple models for ensemble learning. To address these issues, we adapt mask transformers for LA segmentation which effectively use both local and global information, and train them with evidential learning to generate uncertainty maps from the learned Dirichlet distribution, with a single forward pass. We validated our approach on the STACOM 2013 dataset and found that our method can produce better segmentation performance than baseline models, and can identify locations our model’s responses are not trustable.

References

  • 1. Uslu, F., Varela, M., Boniface, G., Mahenthran, T., Chubb, H., Bharath, A.A., 2021. LA-Net: a multi-task deep network for the segmentation of the left atrium. IEEE Transactions on Medical Imaging, 41(2), 456-464
  • 2. Uslu, F., Bharath, A.A., 2023. TMS-Net: a segmentation network coupled with a run-time quality control method for robust cardiac image segmentation. Computers in Biology and Medicine, 152, 106422.
  • 3. Uslu, F., 2023. GSM-Net: a global sequence modelling network for the segmentation of short axis CINE MRI images. Computerized Medical Imaging and Graphics, 102266.
  • 4. Gawlikowski, J., Tassi, C.R.N., Ali, M., Lee, J., Humt, M., Feng, J., Zhu, X.X., 2023. A survey of uncertainty in deep neural networks. Artificial Intelligence Review, 56(Suppl 1), 1513-1589.
  • 5. Sensoy, M., Kaplan, L., Kandemir, M., 2018. Evidential deep learning to quantify classification uncertainty. Advances in Neural Information Processing Systems, 31.
  • 6. Li, H., Nan, Y., Del Ser, J., Yang, G., 2023. Region-based evidential deep learning to quantify uncertainty and improve robustness of brain tumor segmentation. Neural Computing and Applications, 35(30), 22071-22085.
  • 7. Huang, L., Ruan, S., Decazes, P., Denœux, T., 2022. Lymphoma segmentation from 3D PET-CT images using a deep evidential network. International Journal of Approximate Reasoning, 149, 39-60.
  • 8. Yager, R.R., Liu, L.(Eds.), 2008. Classic works of the dempster-shafer theory of belief functions. Springer, 219).
  • 9. Cheng, B., Schwing, A., Kirillov, A., 2021. Per-pixel classification is not all you need for semantic segmentation. Advances in Neural Information Processing Systems, 34, 17864-17875.
  • 10. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S., 2020. End-to-end object detection with transformers. In European Conference on Computer Vision (213-229). Cham: Springer International Publishing.
  • 11. Yu, Q., Wang, H., Qiao, S., Collins, M., Zhu, Y., Adam, H., Chen, L.C., 2022. K-means mask transformer. In European Conference on Computer Vision (288-307). Cham: Springer Nature Switzerland.
  • 12. Tobon-Gomez, C., Geers, A.J., Peters, J., Jürgen W., Karen, P., Rashed, K., et al., 2015. Left atrial segmentation challenge 2013: MRI testing. Figshare. Dataset.
  • 13. Zhang, Z., Liu, Q., Wang, Y., 2018. Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters, 15(5), 749-753.
  • 14. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Polosukhin, I., 2017. Attention is all you need. Advances in Neural Information Processing Systems, 30.

Kanıtsal Maske Dönüştürücü Model ile Sol Kulakçık Bölütlemesi

Year 2024, , 639 - 646, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1560046

Abstract

Sol kulakçığın yeniden şekillenmesine sebep olan hastalıklarının tanısının konulabilmesi için, sol kulakçığın bölütlenmesi gerekmektedir. Bu amaçla, genel olarak, konvolusyenel ağlar kullanılmaktadır. Fakat bu modellerin performansı, yerel hesaplama yapmaları nedeniyle düşük olabilir. Belirsizlik haritaları üretebilmeleri için, Monte Karlo dropout ya da çoklu model eğitimi (ensemble) gibi yaklaşımlara ihtiyaç duyulur. Bu problemleri gidermek için, yerel ve global bilgiyi bir arada kullanan, maske dönüştürücü modelleri, sol kulakçık bölütlenmesi için adapte ettik. Belirsizlik haritalarını elde etmek için de bu modeller, kanıtsal öğrenme ile eğitildi. Böylece, öğrenilen Dirichlet dağılımı kullanılarak, tek adımda belirsizlik haritaları elde edilebildi. Öne sürülen yaklaşım, STACOM 2013 veri setinde test edildi ve karşılaştırılan modellerden daha başarılı performans gösterdiği gözlemlendi. Üretilen belirsizlik haritalarının, modelin kararsız olduğu yerlerde yüksek belirsizlik gösterdiği gözlemlendi.

References

  • 1. Uslu, F., Varela, M., Boniface, G., Mahenthran, T., Chubb, H., Bharath, A.A., 2021. LA-Net: a multi-task deep network for the segmentation of the left atrium. IEEE Transactions on Medical Imaging, 41(2), 456-464
  • 2. Uslu, F., Bharath, A.A., 2023. TMS-Net: a segmentation network coupled with a run-time quality control method for robust cardiac image segmentation. Computers in Biology and Medicine, 152, 106422.
  • 3. Uslu, F., 2023. GSM-Net: a global sequence modelling network for the segmentation of short axis CINE MRI images. Computerized Medical Imaging and Graphics, 102266.
  • 4. Gawlikowski, J., Tassi, C.R.N., Ali, M., Lee, J., Humt, M., Feng, J., Zhu, X.X., 2023. A survey of uncertainty in deep neural networks. Artificial Intelligence Review, 56(Suppl 1), 1513-1589.
  • 5. Sensoy, M., Kaplan, L., Kandemir, M., 2018. Evidential deep learning to quantify classification uncertainty. Advances in Neural Information Processing Systems, 31.
  • 6. Li, H., Nan, Y., Del Ser, J., Yang, G., 2023. Region-based evidential deep learning to quantify uncertainty and improve robustness of brain tumor segmentation. Neural Computing and Applications, 35(30), 22071-22085.
  • 7. Huang, L., Ruan, S., Decazes, P., Denœux, T., 2022. Lymphoma segmentation from 3D PET-CT images using a deep evidential network. International Journal of Approximate Reasoning, 149, 39-60.
  • 8. Yager, R.R., Liu, L.(Eds.), 2008. Classic works of the dempster-shafer theory of belief functions. Springer, 219).
  • 9. Cheng, B., Schwing, A., Kirillov, A., 2021. Per-pixel classification is not all you need for semantic segmentation. Advances in Neural Information Processing Systems, 34, 17864-17875.
  • 10. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S., 2020. End-to-end object detection with transformers. In European Conference on Computer Vision (213-229). Cham: Springer International Publishing.
  • 11. Yu, Q., Wang, H., Qiao, S., Collins, M., Zhu, Y., Adam, H., Chen, L.C., 2022. K-means mask transformer. In European Conference on Computer Vision (288-307). Cham: Springer Nature Switzerland.
  • 12. Tobon-Gomez, C., Geers, A.J., Peters, J., Jürgen W., Karen, P., Rashed, K., et al., 2015. Left atrial segmentation challenge 2013: MRI testing. Figshare. Dataset.
  • 13. Zhang, Z., Liu, Q., Wang, Y., 2018. Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters, 15(5), 749-753.
  • 14. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Polosukhin, I., 2017. Attention is all you need. Advances in Neural Information Processing Systems, 30.
There are 14 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering (Other)
Journal Section Articles
Authors

Fatmatülzehra Uslu 0000-0001-7153-7583

Publication Date October 3, 2024
Submission Date January 5, 2024
Acceptance Date September 27, 2024
Published in Issue Year 2024

Cite

APA Uslu, F. (2024). An Evidential Mask Transformer for Left Atrium Segmentation. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 639-646. https://doi.org/10.21605/cukurovaumfd.1560046