Research Article
BibTex RIS Cite

A Dual-Band Patch Antenna with Improved Gain and Group Delay Characteristics for C-Band and X-Band Applications

Year 2021, , 261 - 272, 10.05.2021
https://doi.org/10.21605/cukurovaumfd.934358

Abstract

In this study, a dual-band patch antenna with improved gain and group delay characteristics is proposed for C-band and X-band applications in radar and satellite communications. In the study, conventional square patch antenna is modified by partially removing the ground plane and rounding the patch corners. The radius of the rounded patch corners is determined by parametric study to achieve the best antenna performance. According to this parametric study, the value of the radius is set to 2 mm. Antenna performance is analysed both in frequency and time domains. Return Loss, Voltage Standing Wave Ratio, gain, radiation pattern, and group delay are investigated via CST Microwave Studio program. Experimental study is also performed to verify the simulation results. The results show that the designed antenna with rounded patch corners and partial ground plane has dual band characteristic. The two resonance frequencies are 6.85 GHz and 9.1 GHz in the simulation results, and 6.56 GHz and 9.12 GHz in the measurement results. The antenna has maximum gain of 5.8 dB. Additionally, group delay variation is very small in the related frequency range. Thus, it is verified that, the proposed antenna has enhanced bandwidth, improved gain and more uniform group delay as compared to the conventional square patch antenna. The proposed dual-band antenna is a quite promising structure with its appropriate gain and uniform group delay characteristics for C-band and X-band applications in radar and satellite communications.

References

  • 1. Saidulu, V., Rao, K.S., Rao, P.S., 2013. The Characteristics of Rectangular and Square Patch Antennas with Superstrates, International Journal of Engineering Sciences and Emerging Technologies, 6(3), 298-307.
  • 2. Gençoğlan, D.N., Arslan, M.T., Çolak, Ş., Yildirim, E., 2020. Ultra-Wideband (UWB) Characteristic Estimation of Elliptic Patch Antenna Based on Machine Learning Techniques, Frequenz, 74(9-10), 351-358.
  • 3. Cai, Y., Qian, Z.P., Cao, W.Q., Zhang, Y.S., Guan, D.F., 2014. Dual Polarized Notch-etched Circular Patch Antenna Loaded with Metamaterial Structure, Frequenz, 68(5-6), 211-216.
  • 4. Shaw, M., Mandal, N., Gangopadhyay, M., 2020. A Low Profile Miniaturized Circular Microstrip Patch Antenna for Dual-band Application, Frequenz, 74(9-10), 333-349.
  • 5. Gouda, M., Yousef, M.Y, 2012. Bandwidth Enhancement Techniques Comparison for Ultra-wideband Microstrip Antennas for Wireless Application, Journal of Theoretical and Applied Information Technology, 35(2), 184-193.
  • 6. Cao, X., Wang, D.F., Gu, Z., Liu, Y., Liu, Y., Tian, X.J., 2018. A Printable Trapezoidstructured UWB Micro-strip Antenna Applicable to MEMS Wireless Sensor Networks, Microsystem Technologies, 24(6), 2499-2506.
  • 7. Yang, X., Liu, X., Song, C., 2015. A Tripleband Monopole Planar Antenna for WLAN and WiMAX Applications, Frequenz, 69(7-8), 305-309.
  • 8. Rao, G.S., Kumar, S.S., Pillalamarri, R., 2015. Analysis and Review on Usage of Broadband Techniques in Design of Printed Antennas for UWB Communications, Microsystem Technologies, 21(7), 1423-1426.
  • 9. Rao, G.S., Kumar, S.S., Pillalamarri, R., 2015. Small Modified Printed Planar Ultrawide Band Disc Antennas with Etched Ground Plane, Microsystem Technologies, 21(5), 1081-1086.
  • 10. Nasr, M.A., Ouda, M.K., Ouda, S.O., 2013. Design of Star-shaped Microstrip Patch Antenna for Ultra-wideband (UWB) Applications, International Journal of Wireless & Mobile Networks, 5(4), 65-73.
  • 11. Gupta, M., Mathur, V., Kumar, A., Saxena, V., Bhatnagar, D., 2019. Microstrip Hexagonal Fractal Antenna for Military Applications, Frequenz, 73(9-10), 321-330.
  • 12. Malaisamy, K., Santhi, M., Robinson, S., Wasim, M., Murugapandiyan, P., 2020. Design and Development of Cross Dipole Antenna for Satellite Applications, Frequenz, 74(7-8), 229-237.
  • 13. Raghavendra, C., Suma, M., Krishna, A.A., 2016. Design and Analysis of Circular Patch Antenna for UWB Applications, Indian Journal of Science and Technology, 9(1-5).
  • 14. Balanis, C.A., 2005. Antenna Theory: Analysis and Design, New Jersey John Wiley and Sons.
  • 15. Bernard, V., Iloh, J.P.I, 2013. Microstrip Antenna Design Using Transmission Line Model, International Journal of Emerging Technology and Advanced Engineering, 3(11), 410-415.
  • 16. Banerjee, P., Bezboruah, T., 2015. Comparative Study of Transmission Line and Cavity Model of Rectangular Microstrip Antenna, International Journal of Natural Sciences Research, 3(6), 76-82.
  • 17. Punitharaj, D., Kalaimani, S., 2013. Design and Fabrication of Microstrip Antenna for UWB Applications, International Journal of Emerging Trends in Electrical and Electronics, 3(2), 60-63.
  • 18. Karamzadeh, S., Rafiei, V., 2020. Dual-band Antenna Modification by Using Dual Bad EBG Structure for WLAN/WiMAX Applications, Journal of Instrumentation, 15, (4).
  • 19. Mouhouche, F., Azrar, A., Dehmas, M., Djafri, K., 2018. Design a Compact UWB Monopole Antenna with Triple Band-notched Characteristics Using EBG Structures, Frequenz, 72(11-12), 479-487.
  • 20. Jaglan, N., Kanaujia, B.K., Gupta, S.D., Srivastava, S., 2017. Dual Band Notched EBG Structure Based UWB MIMO/diversity Antenna with Reduced Wide Band Electromagnetic Coupling, Frequenz, 71,(11- 12), 555-565.
  • 21. Verma, M.K., Kanaujia, B.K., Saini, J.P., Saini P.S., 2020. A Broadband Circularly Polarized Cross-slotted Patch Antenna with Horizontal Meandered Strip (HMS), Frequenz, 74(5-6), 191-199.
  • 22. Pan, C.Y., Su, C.C., Yang, W.L., 2018. CPWfed Circularly Polarized Slot Antenna with Small Gap and Stick-shaped Shorted Strip forUHF FRID Readers, Frequenz, 72(5-6), 181-188.
  • 23. Mishra, B., Singh, V., Singh, R., 2017. Dual and Wide-band Slot Loaded Stacked Microstrip Patch Antenna for WLAN/WiMAX Applications, Microsystem Technologies, 23(8), 3467-3475.
  • 24. Patil, S., Singh, A.K., Kanaujia, B.K., Yadava R.L., 2018. Design of Dual Band Dual Sense Circularly Polarized Wide Slot Antenna with C-shaped Radiator for Wireless Applications, Frequenz, 72(7-8), 343-351.
  • 25. Wang, Z., Peng, Y., Ran, Y., Qin, W., Yang, H., 2016. Small Printed Tri-band Antenna with Reduced Ground-plane Effect, Frequenz, 70 (5-6), 219-224.
  • 26. Awad, N.M., Abdelazeez, M.K., 2015. UWB Antenna with Round Steps, IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1954-1955.
  • 27. Farahbakhsh,A., D., Zarifi, 2020. Miniaturization of Patch Antennas by Curved Edges, AEU-international Journal of Electronics and Communications, 117.
  • 28. Ahire, D.D., Kharate, G.K., 2017. Corner Rounded UWB Monopole Rectangular Microstrip Patch Antenna, IEEE Applied Electromagnetics Conference (AEMC), 1-2.
  • 29. Ahire, D.D., Kharate, G.K., 2018. Defective Ground Corner Rounded Ultra-wideband Microstrip Patch Antenna for Bio-medical Applications, ICTAC Journal on Microelectronics, 3(4), 462-466.
  • 30. Mandal, K. 2016. A Review on Printed Monopole Antenna for UWB Applications, International Journal of Advanced Research in Computer and Communication Engineering, 4(2), 508-510.
  • 31. Krishna, T.R., Madhav, B.T.P., Geetanjali, S., Parnika, B., Bhargavi, M.L., Tanmai, A.S., Anilkumar, T., 2016. Design and Study of a CPW Fed Truncated Circular Patch Switchable Band-notched UWB Antenna, Int. J. Recen Technol. Eng. IJRTE, 8(1), 3037-3043.
  • 32. Elajoumi, S., Tajmouati, A., Errkik, A., Sanchez, A., Latrach, M., 2017. Microstrip Rectangular Monopole Antennas with Defected Ground for UWB Applications, International Journal of Electrical and Computer Engineering, 7(4), 2027-2035.
  • 33. Majeed, M.W., Khan, A., Rehman, A.U., Rashid, K., 2011. Microstrip Patch Antennas for Microwave S-band, C-band and X-band Applications, Bahria University Journal of Information & Communication Technology, 4(1), 36.
  • 34. Majeed, A.H., Sayidmarie, K.H., 2018. Extended Bandwidth Microstrip Circular Patch Antenna for Dual Band Applications, International Journal of Electrical and Computer Engineering, 8(2), 1056.
  • 35. Joshi, A., Singhal, R., 2019. Coaxially Fed Hexagonal Patch Antenna for C- and X-band Applications with Reduced-ground Plane, ECTI Transactions on Electrical Engineering, Electronics, and Communications, 17(2), 136-143.
  • 36. Bhavani, K.V.L., Khan, H., Madhav, B.T.P., 2015. Multiband Slotted Aperture Antenna with Defected Ground Structure for C and Xband Communication Applications, Journal of Theoretical and Applied Information Technology, 82(3), 454.
  • 37. Prema, N., 2016. Design of Multiband Microstrip Patch Antenna for C and X-band, Optik, 127(20), 8812-8818.
  • 38. Sharma, S., Kumar, G., 2016. A Dual Wideband Stair Shape Microstrip Patch Antenna for C & X Band, International Journal of Electronics and Communication Engineering (IJECE), 5(4), 1-8.
  • 39. Djengomemgoto, G., Altunok, R., Karabacak, C., İmeci, Ş.T., Durak, T., 2017. Dual-band gemini-shaped Microstrip Patch Antenna forC- Band and X- Band Applications, International Applied Computational Electromagnetics Society Symposium (ACES), 1-2.
  • 40. Kiruthika, R., Shanmuganantham, T., 2017. A Canadian Leaf Shaped Triple Band Patch Antenna with DGS for X and C-band Applications, International Journal of Electronics and Communication Engineering, 11(4), 502-508.
  • 41. Meloui, M., Essaaidi, M., 2014. A Dual Ultrawide Band Slotted Antenna for C and X-bands Application, Progress in Electromagnetics Research, 47, 91-96.
  • 42. Saini, H., Kaur, A., Thakur, A., Kumar, R., Kumar, N.N, 2016. A Parametric Analysis of Ground Slotted Patch Antenna for X-band Applications, 3rd International Conference on Signal Processing and Integrated Networks (SPIN), 549-552.
  • 43. Salamin, M.A., Ali, W.A.E., Das, S., Zugari, A., 2020. A Novel Etched-substrate Mechanism for Characteristics Improvement of X-band Broadband Printed Monopole Antenna, Microsystem Technologies, 26, 3773-3782.
  • 44. Viswanadha, K., Raghava, N.S., 2020. Designand Analysis of a Multi-band Flower Shaped Patch Antenna for WLAN/WiMAX/ISM Band Applications, Wireless Personal Communications, 1-25.
  • 45. Kasi, B., Ping, L.C., Chakrabarty, K.C., 2011. A Compact Microstrip Antenna for Ultrawideband Applications, European Journal of Scientific Research, 67(1), 45-51.
  • 46. Mazhar, W.M., Tarar, M.A., Tahir, F.A., Ullah, S., Bhatti, F.A., 2013. Compact Microstrip Patch Antenna for Ultra-wideband Applications. PIERS Proceedings, Stockholm, Sweden, 12–15.

C-Bant ve X-Bant Uygulamaları için İyileştirilmiş Kazanç ve Grup Gecikme Özelliklerine Sahip Çift Bantlı Yama Anteni

Year 2021, , 261 - 272, 10.05.2021
https://doi.org/10.21605/cukurovaumfd.934358

Abstract

Bu çalışmada, radar ve uydu iletişiminde C-bandı ve X-bandı uygulamaları için iyileştirilmiş kazanç ve grup gecikme özelliklerine sahip bir çift bantlı yama anten önerilmiştir. Çalışmada, geleneksel kare yama anten, zemin düzlemi kısmen kaldırılarak ve yama köşeleri yuvarlatılarak modifiye edilmiştir. Yuvarlatılmış yama köşelerinin yarıçapı, en iyi anten performansını elde etmek için parametrik çalışma ile belirlenmiştir. Bu parametrik çalışmaya göre yarıçapın değeri 2 mm olarak ayarlanmıştır. Anten performansı hem zaman hem de frekans alanlarında analiz edilmiştir. Geri Dönüş Kaybı, Duran Dalga Oranı, kazanç, ışıma örüntüsü ve grup gecikmesi CST Microwave Studio programı ile incelenmiştir. Simülasyon sonuçlarını doğrulamak için deneysel çalışma da yapılmıştır. Sonuçlar, köşesi yuvarlatılmış yaması ve kısmi zemin düzlemi olan antenin çift bant özelliğine sahip olduğunu göstermektedir. İki rezonans frekansı, simülasyon sonuçlarında 6,85 GHz ve 9,1 GHz, ölçüm sonuçlarında ise 6,56 GHz ve 9,12 GHz’dir. Antenin maksimum kazancı 5,8 dB’dir. Ayrıca, ilgili frekans aralığında grup gecikme değişimi çok küçüktür. Böylelikle, önerilen antenin geleneksel kare yama antenine kıyasla artırılmış bant genişliğine, iyileştirilmiş kazanca ve daha tekdüze grup gecikmesine sahip olduğu doğrulanmıştır.
Önerilen çift bantlı anten, radar ve uydu iletişiminde C-bandı ve X-bandı uygulamaları için uygun kazanç ve tekdüze grup gecikme özellikleri ile oldukça ümit verici bir yapıdır.

References

  • 1. Saidulu, V., Rao, K.S., Rao, P.S., 2013. The Characteristics of Rectangular and Square Patch Antennas with Superstrates, International Journal of Engineering Sciences and Emerging Technologies, 6(3), 298-307.
  • 2. Gençoğlan, D.N., Arslan, M.T., Çolak, Ş., Yildirim, E., 2020. Ultra-Wideband (UWB) Characteristic Estimation of Elliptic Patch Antenna Based on Machine Learning Techniques, Frequenz, 74(9-10), 351-358.
  • 3. Cai, Y., Qian, Z.P., Cao, W.Q., Zhang, Y.S., Guan, D.F., 2014. Dual Polarized Notch-etched Circular Patch Antenna Loaded with Metamaterial Structure, Frequenz, 68(5-6), 211-216.
  • 4. Shaw, M., Mandal, N., Gangopadhyay, M., 2020. A Low Profile Miniaturized Circular Microstrip Patch Antenna for Dual-band Application, Frequenz, 74(9-10), 333-349.
  • 5. Gouda, M., Yousef, M.Y, 2012. Bandwidth Enhancement Techniques Comparison for Ultra-wideband Microstrip Antennas for Wireless Application, Journal of Theoretical and Applied Information Technology, 35(2), 184-193.
  • 6. Cao, X., Wang, D.F., Gu, Z., Liu, Y., Liu, Y., Tian, X.J., 2018. A Printable Trapezoidstructured UWB Micro-strip Antenna Applicable to MEMS Wireless Sensor Networks, Microsystem Technologies, 24(6), 2499-2506.
  • 7. Yang, X., Liu, X., Song, C., 2015. A Tripleband Monopole Planar Antenna for WLAN and WiMAX Applications, Frequenz, 69(7-8), 305-309.
  • 8. Rao, G.S., Kumar, S.S., Pillalamarri, R., 2015. Analysis and Review on Usage of Broadband Techniques in Design of Printed Antennas for UWB Communications, Microsystem Technologies, 21(7), 1423-1426.
  • 9. Rao, G.S., Kumar, S.S., Pillalamarri, R., 2015. Small Modified Printed Planar Ultrawide Band Disc Antennas with Etched Ground Plane, Microsystem Technologies, 21(5), 1081-1086.
  • 10. Nasr, M.A., Ouda, M.K., Ouda, S.O., 2013. Design of Star-shaped Microstrip Patch Antenna for Ultra-wideband (UWB) Applications, International Journal of Wireless & Mobile Networks, 5(4), 65-73.
  • 11. Gupta, M., Mathur, V., Kumar, A., Saxena, V., Bhatnagar, D., 2019. Microstrip Hexagonal Fractal Antenna for Military Applications, Frequenz, 73(9-10), 321-330.
  • 12. Malaisamy, K., Santhi, M., Robinson, S., Wasim, M., Murugapandiyan, P., 2020. Design and Development of Cross Dipole Antenna for Satellite Applications, Frequenz, 74(7-8), 229-237.
  • 13. Raghavendra, C., Suma, M., Krishna, A.A., 2016. Design and Analysis of Circular Patch Antenna for UWB Applications, Indian Journal of Science and Technology, 9(1-5).
  • 14. Balanis, C.A., 2005. Antenna Theory: Analysis and Design, New Jersey John Wiley and Sons.
  • 15. Bernard, V., Iloh, J.P.I, 2013. Microstrip Antenna Design Using Transmission Line Model, International Journal of Emerging Technology and Advanced Engineering, 3(11), 410-415.
  • 16. Banerjee, P., Bezboruah, T., 2015. Comparative Study of Transmission Line and Cavity Model of Rectangular Microstrip Antenna, International Journal of Natural Sciences Research, 3(6), 76-82.
  • 17. Punitharaj, D., Kalaimani, S., 2013. Design and Fabrication of Microstrip Antenna for UWB Applications, International Journal of Emerging Trends in Electrical and Electronics, 3(2), 60-63.
  • 18. Karamzadeh, S., Rafiei, V., 2020. Dual-band Antenna Modification by Using Dual Bad EBG Structure for WLAN/WiMAX Applications, Journal of Instrumentation, 15, (4).
  • 19. Mouhouche, F., Azrar, A., Dehmas, M., Djafri, K., 2018. Design a Compact UWB Monopole Antenna with Triple Band-notched Characteristics Using EBG Structures, Frequenz, 72(11-12), 479-487.
  • 20. Jaglan, N., Kanaujia, B.K., Gupta, S.D., Srivastava, S., 2017. Dual Band Notched EBG Structure Based UWB MIMO/diversity Antenna with Reduced Wide Band Electromagnetic Coupling, Frequenz, 71,(11- 12), 555-565.
  • 21. Verma, M.K., Kanaujia, B.K., Saini, J.P., Saini P.S., 2020. A Broadband Circularly Polarized Cross-slotted Patch Antenna with Horizontal Meandered Strip (HMS), Frequenz, 74(5-6), 191-199.
  • 22. Pan, C.Y., Su, C.C., Yang, W.L., 2018. CPWfed Circularly Polarized Slot Antenna with Small Gap and Stick-shaped Shorted Strip forUHF FRID Readers, Frequenz, 72(5-6), 181-188.
  • 23. Mishra, B., Singh, V., Singh, R., 2017. Dual and Wide-band Slot Loaded Stacked Microstrip Patch Antenna for WLAN/WiMAX Applications, Microsystem Technologies, 23(8), 3467-3475.
  • 24. Patil, S., Singh, A.K., Kanaujia, B.K., Yadava R.L., 2018. Design of Dual Band Dual Sense Circularly Polarized Wide Slot Antenna with C-shaped Radiator for Wireless Applications, Frequenz, 72(7-8), 343-351.
  • 25. Wang, Z., Peng, Y., Ran, Y., Qin, W., Yang, H., 2016. Small Printed Tri-band Antenna with Reduced Ground-plane Effect, Frequenz, 70 (5-6), 219-224.
  • 26. Awad, N.M., Abdelazeez, M.K., 2015. UWB Antenna with Round Steps, IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1954-1955.
  • 27. Farahbakhsh,A., D., Zarifi, 2020. Miniaturization of Patch Antennas by Curved Edges, AEU-international Journal of Electronics and Communications, 117.
  • 28. Ahire, D.D., Kharate, G.K., 2017. Corner Rounded UWB Monopole Rectangular Microstrip Patch Antenna, IEEE Applied Electromagnetics Conference (AEMC), 1-2.
  • 29. Ahire, D.D., Kharate, G.K., 2018. Defective Ground Corner Rounded Ultra-wideband Microstrip Patch Antenna for Bio-medical Applications, ICTAC Journal on Microelectronics, 3(4), 462-466.
  • 30. Mandal, K. 2016. A Review on Printed Monopole Antenna for UWB Applications, International Journal of Advanced Research in Computer and Communication Engineering, 4(2), 508-510.
  • 31. Krishna, T.R., Madhav, B.T.P., Geetanjali, S., Parnika, B., Bhargavi, M.L., Tanmai, A.S., Anilkumar, T., 2016. Design and Study of a CPW Fed Truncated Circular Patch Switchable Band-notched UWB Antenna, Int. J. Recen Technol. Eng. IJRTE, 8(1), 3037-3043.
  • 32. Elajoumi, S., Tajmouati, A., Errkik, A., Sanchez, A., Latrach, M., 2017. Microstrip Rectangular Monopole Antennas with Defected Ground for UWB Applications, International Journal of Electrical and Computer Engineering, 7(4), 2027-2035.
  • 33. Majeed, M.W., Khan, A., Rehman, A.U., Rashid, K., 2011. Microstrip Patch Antennas for Microwave S-band, C-band and X-band Applications, Bahria University Journal of Information & Communication Technology, 4(1), 36.
  • 34. Majeed, A.H., Sayidmarie, K.H., 2018. Extended Bandwidth Microstrip Circular Patch Antenna for Dual Band Applications, International Journal of Electrical and Computer Engineering, 8(2), 1056.
  • 35. Joshi, A., Singhal, R., 2019. Coaxially Fed Hexagonal Patch Antenna for C- and X-band Applications with Reduced-ground Plane, ECTI Transactions on Electrical Engineering, Electronics, and Communications, 17(2), 136-143.
  • 36. Bhavani, K.V.L., Khan, H., Madhav, B.T.P., 2015. Multiband Slotted Aperture Antenna with Defected Ground Structure for C and Xband Communication Applications, Journal of Theoretical and Applied Information Technology, 82(3), 454.
  • 37. Prema, N., 2016. Design of Multiband Microstrip Patch Antenna for C and X-band, Optik, 127(20), 8812-8818.
  • 38. Sharma, S., Kumar, G., 2016. A Dual Wideband Stair Shape Microstrip Patch Antenna for C & X Band, International Journal of Electronics and Communication Engineering (IJECE), 5(4), 1-8.
  • 39. Djengomemgoto, G., Altunok, R., Karabacak, C., İmeci, Ş.T., Durak, T., 2017. Dual-band gemini-shaped Microstrip Patch Antenna forC- Band and X- Band Applications, International Applied Computational Electromagnetics Society Symposium (ACES), 1-2.
  • 40. Kiruthika, R., Shanmuganantham, T., 2017. A Canadian Leaf Shaped Triple Band Patch Antenna with DGS for X and C-band Applications, International Journal of Electronics and Communication Engineering, 11(4), 502-508.
  • 41. Meloui, M., Essaaidi, M., 2014. A Dual Ultrawide Band Slotted Antenna for C and X-bands Application, Progress in Electromagnetics Research, 47, 91-96.
  • 42. Saini, H., Kaur, A., Thakur, A., Kumar, R., Kumar, N.N, 2016. A Parametric Analysis of Ground Slotted Patch Antenna for X-band Applications, 3rd International Conference on Signal Processing and Integrated Networks (SPIN), 549-552.
  • 43. Salamin, M.A., Ali, W.A.E., Das, S., Zugari, A., 2020. A Novel Etched-substrate Mechanism for Characteristics Improvement of X-band Broadband Printed Monopole Antenna, Microsystem Technologies, 26, 3773-3782.
  • 44. Viswanadha, K., Raghava, N.S., 2020. Designand Analysis of a Multi-band Flower Shaped Patch Antenna for WLAN/WiMAX/ISM Band Applications, Wireless Personal Communications, 1-25.
  • 45. Kasi, B., Ping, L.C., Chakrabarty, K.C., 2011. A Compact Microstrip Antenna for Ultrawideband Applications, European Journal of Scientific Research, 67(1), 45-51.
  • 46. Mazhar, W.M., Tarar, M.A., Tahir, F.A., Ullah, S., Bhatti, F.A., 2013. Compact Microstrip Patch Antenna for Ultra-wideband Applications. PIERS Proceedings, Stockholm, Sweden, 12–15.
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Duygu Nazan Gençoğlan This is me 0000-0001-5014-9514

Şule Çolak This is me 0000-0002-9529-4544

Publication Date May 10, 2021
Published in Issue Year 2021

Cite

APA Gençoğlan, D. N., & Çolak, Ş. (2021). A Dual-Band Patch Antenna with Improved Gain and Group Delay Characteristics for C-Band and X-Band Applications. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(1), 261-272. https://doi.org/10.21605/cukurovaumfd.934358