Research Article
BibTex RIS Cite

Yüksek Güçlü, Yüksek Gerilimli Yerleşik EV Şarj Cihazlarında Kullanılan Active-Front-End Doğrultucu Topolojilerinin Performans Kıyaslaması

Year 2021, Volume: 36 Issue: 4, 1041 - 1050, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1048344

Abstract

Üç fazlı şebekeden beslenen Elektrikli araçlarda (EA'lar) ve plug-in hibrit EV'lerde (PHEA'lar) kullanılan yüksek güçlü yerleşik batarya şarj cihazları genellikle AA-DA ve DA-DA olarak iki aşamalı bir yapıdan oluşur. AA-DA aşaması, active-front-end (AFE) olarak da bilinir. AFE, şebeke gerilimini doğrultup, güç faktörünü düzenleyip ve DA-DA dönüştürücüye sabit bir DC-bara gerilimi sağlarken, DA-DA dönüştürücü aşaması, batarya ömrünü uzatmak için şarj algoritmalarını dikkate alarak şarj akımını regüle eder. Bu çalışma, yüksek güçlü yerleşik şarj cihazlarında kullanılabilecek maliyet/performans açısından etkin AFE topolojisinin seçimine odaklanmaktadır. Uygun olan dört farklı AA-DA topolojisi incelenmiştir: (i) 3-fazlı 2-seviyeli doğrultucu, (ii) 3-fazlı, 3-seviyeli nötr nokta-bağlantılı (NPC) doğrultucu, (iii) 3-fazlı, 3-seviye T tipi doğrultucu ve (iv) Viyana doğrultucu. Bu çalışmada, yukarıda bahsedilen AFE topolojileri PLECS/SpeedFit ortamında simüle edilmiş ve verimlilik, kayıplar, sıcaklık, anahtarlama elemanları sayısı, maliyet ve maliyet/verimlilik ölçütleri açısından karşılaştırılmıştır. Söz konusu topolojilerin performans sonuçları farklı çalışma frekansları altında değerlendirilmiştir. Sonuçlar, front-end AA-DA dönüştürücü için en uygun topoloji alternatiflerinin 3 fazlı 2 seviyeli PWM doğrultucu ve Viyana doğrultucu olduğunu ortaya koymaktadır. 3 fazlı 2 seviyeli PWM doğrultucu %12 maliyet avantajı, daha az bileşen ve kontrol kolaylığı avantajları ile üstün olmasına rağmen, toplam harmonik bozulma açısından Viyana doğrultucunun biraz gerisinde kalmaktadır.

References

  • 1. Umar, M., Ji, X., Kirikkaleli, D., Alola, A.A., 2021. The Imperativeness of Environmental Quality in the United States Transportation Sector Amidst Biomass-fossil Energy Consumption and Growth. Journal of Cleaner Production, 285, 1-15.
  • 2. Qian, Q., Sun, W., Zhang, T., Lu, S., 2017. A Voltage-fed Single-stage PFC Full-bridge Converter with Asymmetric Phase-shifted Control for Battery Chargers. Journal of Power Electronics, 17, 31-40.
  • 3. Musavi, F., Edington, M., Eberle, W., Dunford, W.G., 2012. Evaluation and Efficiency Comparison of Front end AC-DC Plug-in Hybrid Charger Topologies. IEEE Transactions on Smart Grid, 3(1), 413-421.
  • 4. Nguyen, H.V., To, D., Lee, D., 2018. Onboard Battery Chargers for Plug-in Electric Vehicles with Dual Functional Circuit for Low-voltage Battery Charging and Active Power Decoupling. IEEE Access, 6, 70212-70222.
  • 5. Bayhan, S., Komurcugil, H., 2020. Sliding-Mode Control Strategy for Three-Phase Three-Level T-Type Rectifiers with DC Capacitor Voltage Balancing. IEEE Access, 8, 64555-64564.
  • 6. Mallik, A., Khaligh, A., 2017. Control of a Three-Phase Boost PFC Converter Using a Single DC-Link Voltage Sensor. IEEE Transactions on Power Electronics, 32(8), 6481-6492.
  • 7. Lee, Y., Khaligh, A., Emadi, A., 2009. Advanced Integrated Bidirectional AC/DC and DC/DC Converter for Plug-in Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology, 58(8), 3970-3980.
  • 8. Komurcugil, H., Kukrer, O., 1998. Lyapunov-based Control for Three-phase PWM AC/DC Voltage-source Converters. IEEE Transactions on Power Electronics, 13(5), 801-813.
  • 9. Kalpana, S.P.P,R., Singh, B., Bhuvaneswari, G., 2018. Design and Implementation of Sensorless Voltage Control of Front-end Rectifier for Power Quality Improvement in Telecom System. IEEE Transactions on Industry Applications, 54(3), 2438-2448.
  • 10. Liu, B., Ren, R., Jones, E.A., Wang, F., Costinett, D., Zhang, Z., 2018. A Modulation Compensation Scheme to Reduce Input Current Distortion in GaN-based High Switching Frequency Three-phase Three-level Vienna-type Rectifiers. IEEE Transactions on Power Electronics, 33(1), 283-298.
  • 11. Zhang, B., Xie, S., Li, Z., Zhao, P., Xu, J., 2021. An Optimized Single-Stage Isolated Swiss-Type AC/DC Converter Based on Single Full-bridge with Midpoint-clamper. IEEE Transactions on Power Electronics, 36(10), 11288-11297.
  • 12. Schrittwieser, L., Leibl, M., Haider, M., Thöny, F., Kolar, J.W., Soeiro, T.B., 2017. 99.3% Efficient Three-phase Buck-type All-SiC SWISS Rectifier for DC Distribution Systems. in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2173-2178.
  • 13. Stoermer, F., Eckel, H., 2018. SiC-hybrid Three Level T-type Rectifier, in PCIM Europe 2018; International Exhibition and Conference for Power Electronics. Intelligent Motion. Renewable Energy and Energy Management, 1-6.
  • 14. Rodriguez, J., Bernet, S., Steimer, P.K., Lizama, I.E., 2010. A Survey on Neutral-point-clamped Inverters. IEEE Transactions on Industrial Electronics, 57(7), 2219-2230.
  • 15. Kolar, J.W., Friedli, T., 2013. The Essence of Three-Phase PFC Rectifier Systems-part I. IEEE Transactions on Power Electronics, 28(1), 176-198.
  • 16. Yilmaz, M., Krein, P.T., 2013. Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-in Electric and Hybrid Vehicles. IEEE Transactions on Power Electronics, 28(5), 2151-2169.
  • 17. Friedli, T., Hartmann, M., Kolar, J..W., 2014. The Essence of Three-Phase PFC Rectifier Systems-part II. IEEE Transactions on Power Electronics, 29(2), 543-560.
  • 18. Aretxabaleta, I., Alegría, I. M. D., Andreu, J., Kortabarria, I., Robles, E., 2021. High-voltage Stations for Electric Vehicle Fast-charging: Trends, Standards, Charging Modes and Comparison of Unity Power-Factor Rectifiers. IEEE Access, 9, 102177-102194.
  • 19. Shi, C., Tang, Y., Khaligh, A., 2017. A Single-phase Integrated Onboard Battery Charger Using Propulsion System for Plug-in Electric Vehicles. IEEE Transactions on Vehicular Technology, 66(12), 10899-10910.
  • 20. Yuan, J., Dorn-Gomba, L., Callegaro, A. D., Reimers, J., Emadi, A., 2021. A Review of Bidirectional On-board Chargers for Electric Vehicles. IEEE Access, 9, 51501-51518.
  • 21. Bor-Ren, L., Yung-Chuan, L., Tsung-Yu, Y., 2004. Implementation of a Three-phase High-power-factor Rectifier with NPC Topology. IEEE Transactions on Aerospace and Electronic Systems, 40(1), 180-189.
  • 22. Chen, J., Zhang, C., Chen, A., Xing, X., Gao, F., 2019. A Carrier-Based Fault-Tolerant Control Strategy for T-type Rectifier with Neutral-point Voltage Oscillations Suppression. IEEE Transactions on Power Electronics, 34(11), 10988-11001.
  • 23. Mukherjee, D., Kastha, D., 2019. Voltage Sensorless Control of VIENNA Rectifier in the Input Current Oriented Reference Frame. IEEE Transactions on Power Electronics, 34(8), 8079-8091.

Performance Benchmarking of Active-Front-End Rectifier Topologies Used in High-Power, High-Voltage Onboard EV Chargers

Year 2021, Volume: 36 Issue: 4, 1041 - 1050, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1048344

Abstract

High power onboard battery chargers employed in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs) fed from three-phase mains typically consist of a two-stage structure as AC-DC and DC-DC stages. The AC-DC stage is also known as the active front end (AFE). While the AFE rectifies the mains voltage, maintains the power factor, and provides a constant DC-link voltage to the DC-DC converter, the DC-DC converter stage regulates the charging current considering the charging algorithms in order to extend the battery service life. This study focuses on the selection of cost/performance effective AFE topology that can be used in high power onboard chargers. Four different suitable AC-DC topologies are investigated: (i) 3-phase 2-level rectifier, (ii) 3-phase, 3-level neutral-point-clamped (NPC) rectifier, (iii) 3-phase, 3-level T-type rectifier, and (iv) Vienna rectifier. In this study, the aforementioned AFE topologies have been simulated on the PLECS/SpeedFit environment and compared in terms of efficiency, losses, temperature, the number of switching elements, cost and cost/efficiency metrics. The performance results of the aforementioned topologies have been evaluated under different operating frequencies. The results reveal that the most suitable topology alternatives for the front-end AC-DC converter are 3-phase 2-level PWM rectifier and Vienna rectifier. Although the 3-phase 2-level PWM rectifier is superior with its 12% cost advantage, fewer components, and ease of control advantages, it lags a little behind the Vienna rectifier in terms of total harmonic distortion.

References

  • 1. Umar, M., Ji, X., Kirikkaleli, D., Alola, A.A., 2021. The Imperativeness of Environmental Quality in the United States Transportation Sector Amidst Biomass-fossil Energy Consumption and Growth. Journal of Cleaner Production, 285, 1-15.
  • 2. Qian, Q., Sun, W., Zhang, T., Lu, S., 2017. A Voltage-fed Single-stage PFC Full-bridge Converter with Asymmetric Phase-shifted Control for Battery Chargers. Journal of Power Electronics, 17, 31-40.
  • 3. Musavi, F., Edington, M., Eberle, W., Dunford, W.G., 2012. Evaluation and Efficiency Comparison of Front end AC-DC Plug-in Hybrid Charger Topologies. IEEE Transactions on Smart Grid, 3(1), 413-421.
  • 4. Nguyen, H.V., To, D., Lee, D., 2018. Onboard Battery Chargers for Plug-in Electric Vehicles with Dual Functional Circuit for Low-voltage Battery Charging and Active Power Decoupling. IEEE Access, 6, 70212-70222.
  • 5. Bayhan, S., Komurcugil, H., 2020. Sliding-Mode Control Strategy for Three-Phase Three-Level T-Type Rectifiers with DC Capacitor Voltage Balancing. IEEE Access, 8, 64555-64564.
  • 6. Mallik, A., Khaligh, A., 2017. Control of a Three-Phase Boost PFC Converter Using a Single DC-Link Voltage Sensor. IEEE Transactions on Power Electronics, 32(8), 6481-6492.
  • 7. Lee, Y., Khaligh, A., Emadi, A., 2009. Advanced Integrated Bidirectional AC/DC and DC/DC Converter for Plug-in Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology, 58(8), 3970-3980.
  • 8. Komurcugil, H., Kukrer, O., 1998. Lyapunov-based Control for Three-phase PWM AC/DC Voltage-source Converters. IEEE Transactions on Power Electronics, 13(5), 801-813.
  • 9. Kalpana, S.P.P,R., Singh, B., Bhuvaneswari, G., 2018. Design and Implementation of Sensorless Voltage Control of Front-end Rectifier for Power Quality Improvement in Telecom System. IEEE Transactions on Industry Applications, 54(3), 2438-2448.
  • 10. Liu, B., Ren, R., Jones, E.A., Wang, F., Costinett, D., Zhang, Z., 2018. A Modulation Compensation Scheme to Reduce Input Current Distortion in GaN-based High Switching Frequency Three-phase Three-level Vienna-type Rectifiers. IEEE Transactions on Power Electronics, 33(1), 283-298.
  • 11. Zhang, B., Xie, S., Li, Z., Zhao, P., Xu, J., 2021. An Optimized Single-Stage Isolated Swiss-Type AC/DC Converter Based on Single Full-bridge with Midpoint-clamper. IEEE Transactions on Power Electronics, 36(10), 11288-11297.
  • 12. Schrittwieser, L., Leibl, M., Haider, M., Thöny, F., Kolar, J.W., Soeiro, T.B., 2017. 99.3% Efficient Three-phase Buck-type All-SiC SWISS Rectifier for DC Distribution Systems. in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2173-2178.
  • 13. Stoermer, F., Eckel, H., 2018. SiC-hybrid Three Level T-type Rectifier, in PCIM Europe 2018; International Exhibition and Conference for Power Electronics. Intelligent Motion. Renewable Energy and Energy Management, 1-6.
  • 14. Rodriguez, J., Bernet, S., Steimer, P.K., Lizama, I.E., 2010. A Survey on Neutral-point-clamped Inverters. IEEE Transactions on Industrial Electronics, 57(7), 2219-2230.
  • 15. Kolar, J.W., Friedli, T., 2013. The Essence of Three-Phase PFC Rectifier Systems-part I. IEEE Transactions on Power Electronics, 28(1), 176-198.
  • 16. Yilmaz, M., Krein, P.T., 2013. Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-in Electric and Hybrid Vehicles. IEEE Transactions on Power Electronics, 28(5), 2151-2169.
  • 17. Friedli, T., Hartmann, M., Kolar, J..W., 2014. The Essence of Three-Phase PFC Rectifier Systems-part II. IEEE Transactions on Power Electronics, 29(2), 543-560.
  • 18. Aretxabaleta, I., Alegría, I. M. D., Andreu, J., Kortabarria, I., Robles, E., 2021. High-voltage Stations for Electric Vehicle Fast-charging: Trends, Standards, Charging Modes and Comparison of Unity Power-Factor Rectifiers. IEEE Access, 9, 102177-102194.
  • 19. Shi, C., Tang, Y., Khaligh, A., 2017. A Single-phase Integrated Onboard Battery Charger Using Propulsion System for Plug-in Electric Vehicles. IEEE Transactions on Vehicular Technology, 66(12), 10899-10910.
  • 20. Yuan, J., Dorn-Gomba, L., Callegaro, A. D., Reimers, J., Emadi, A., 2021. A Review of Bidirectional On-board Chargers for Electric Vehicles. IEEE Access, 9, 51501-51518.
  • 21. Bor-Ren, L., Yung-Chuan, L., Tsung-Yu, Y., 2004. Implementation of a Three-phase High-power-factor Rectifier with NPC Topology. IEEE Transactions on Aerospace and Electronic Systems, 40(1), 180-189.
  • 22. Chen, J., Zhang, C., Chen, A., Xing, X., Gao, F., 2019. A Carrier-Based Fault-Tolerant Control Strategy for T-type Rectifier with Neutral-point Voltage Oscillations Suppression. IEEE Transactions on Power Electronics, 34(11), 10988-11001.
  • 23. Mukherjee, D., Kastha, D., 2019. Voltage Sensorless Control of VIENNA Rectifier in the Input Current Oriented Reference Frame. IEEE Transactions on Power Electronics, 34(8), 8079-8091.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Uğraş Cuma This is me 0000-0001-6040-0362

Murat Mustada Savrun This is me 0000-0001-5847-5082

Publication Date December 29, 2021
Published in Issue Year 2021 Volume: 36 Issue: 4

Cite

APA Cuma, M. U., & Savrun, M. M. (2021). Performance Benchmarking of Active-Front-End Rectifier Topologies Used in High-Power, High-Voltage Onboard EV Chargers. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(4), 1041-1050. https://doi.org/10.21605/cukurovaumfd.1048344