Research Article
BibTex RIS Cite

An Overview of Micro-Hydropower Technologies and Design Characteristics of Waterwheel Systems

Year 2016, Volume: 31 Issue: 1, 117 - 134, 15.06.2016
https://doi.org/10.21605/cukurovaummfd.317742

Abstract

In recent years, the global warming and efficient usage of energy sources are become most attractive issues. Furthermore, renewable energy technologies play an important role in addressing global energy and environmental challenges. Among the renewable energy technologies, hydropower is considered to be the most advanced and mature, providing some level of electricity generation in more than 160 countries worldwide. Micro-hydropower plant is in the category of small-scale hydropower projects, and it provides an affordable, reliable, economically viable, socially acceptable and environmentally energy alternative for rural area. In this article, micro-hydropower technologies, design and performance characteristics, power losses, mechanical powers and efficiencies for the waterwheel systems such as breastshot, overshot and undershot are reviewed in detail and compared each other. In addition, the development of worldwide hydropower capacity is discussed, and the top countries in terms of total installed capacity are reported and investigated.

References

  • 1. Goričanec, D., Pozeb. V., Tomšič, L., Trop, P., 2014. Exploitation of the Waste-Heat from Hydro Power Plants. Energy, 77:220-225.
  • 2. Bilgili, M., Ozbek, A., Sahin, B., Kahraman, A., 2015. An Overview of Renewable Electric Power Capacity and Progress in New Technologies in the World. Renewable and Sustainable Energy Reviews, 49:323-334.
  • 3. El-Askary, W.A., Nasef, M.H., AbdEL-hamid, A.A., Gad, H.E., 2015. Harvesting Wind Energy for Improving Performance of Savonius Rotor. Journal of Wind Engineering and Industrial Aerodynamics, 139:8-15.
  • 4. Vermaak, H.J., Kusakana, K., Koko, S.P., 2014. Status of Micro-Hydrokinetic River Technology in Rural Applications: A Review of Literature. Renewable and Sustainable Energy Reviews, 29:625-633.
  • 5. Date, A., Akbarzadeh, A., 2009. Design and Cost Analysis of Low Head Simple Reaction Hydro Turbine for Remote Area Power Supply. Renewable Energy, 34:409-415.
  • 6. Panić, M., Urošev, M., Pešić, A.M., Brankov, J., Bjeljac, Z., 2013. Small Hydropower Plants in Serbia: Hydropower Potential, Current State and Perspectives. Renewable and Sustainable Energy Reviews, 23:341-349.
  • 7. Bahadori, A., Zahedi, G., Zendehboudi, S., 2013. An Overview of Australia’s Hydropower Energy: Status and Future Prospects. Renewable and Sustainable Energy Reviews, 20:565-569.
  • 8. Xu, J., Ni, T., Zheng, B., 2015. Hydropower Development Trends from a Technological Paradigm Perspective. Energy Conversion and Management, 90:195-206.
  • 9. Laghari, J.A., Mokhlis, H., Bakar, A.H.A., Mohammad, H., 2013. A Comprehensive Overview of New Designs in the Hydraulic, Electrical Equipments and Controllers of Mini Hydro Power Plants Making it Cost Effective Technology. Renewable and Sustainable Energy Reviews, 20:279-293.
  • 10. Fernando, J.N., Rival, D.E., 2014. Characterizing the Influence of Upstream Obstacles on Very Low Head Water-Turbine Performance Journal of Hydraulic Research, 52:644-652.
  • 11. Paudel, S., Linton, N., Zanke, U.C.E., Saenger, N. 2013. Experimental Investigation on the Effect of Channel Width on Flexible Rubber Blade Water Wheel Performance. Renewable Energy, 52:1-7.
  • 12. REN21, Renewable Energy Policy Network for the 21st Century, Renewables 2015 Global Status Report, 2015, http://www.ren21.net.
  • 13. IEA, International Energy Agency, Technology Roadmap, Hydropower, http://www.iea.org/
  • 14. IEA, International Energy Agency, Renewable Energy Essentials, Hydropower, http://www.iea.org/
  • 15. Kaunda, C.S., Kimambo, C.Z., Nielsen, T.K., 2014. A Technical Discussion on Microhydropower Technology and its Turbines. Renewable and Sustainable Energy Reviews 35:445-459.
  • 16. Nasir, B.A., 2014. Design Considerations of Micro-Hydro-Electric Power Plant, Energy Procedia 50:19-29.
  • 17. Okot, D.K., 2013. Review of Small Hydropower Technology. Renewable and Sustainable Energy Reviews, 26:515-520.
  • 18. Kentel, E., Alp, E., 2013. Hydropower in Turkey: Economical, Social and Environmental Aspects and Legal Challenges. Environmental Science and Policiy, 31:34-43.
  • 19. Quaranta, E., Revelli, R., 2015. Output Power and Power Losses Estimation for an Overshot Water Wheel. Renewable Energy, 83:979-987.
  • 20. Paudel, S., Linton, N., Zanke, U.C.E., Saenger N., 2013. Experimental Investigation on the Effect of Channel width on Flexible Rubber Blade Water Wheel Performance. Renewable Energy, 52:1-7.
  • 21. Quaranta, E., Revelli, R., 2015. Performance Characteristics, Power Losses and Mechanical Power Estimation for a Breastshot Water Wheel. Energy, 87:315-325.
  • 22. Denny, M., 2004. The Efficiency of Overshot and Undershot Waterwheels. European Journal of Physics, 25:193-202.
  • 23. Senior, J., Saenger, N., Müller, G., 2010. New Hydropower Converters for Very Low-Head Differences. Journal of Hydraulic Research, 48(6):703-714.

Mikro-Hidroelektrik Teknolojileri ve Su Çarkı Sistemlerinin Tasarım Özelliklerine Genel Bir Bakış

Year 2016, Volume: 31 Issue: 1, 117 - 134, 15.06.2016
https://doi.org/10.21605/cukurovaummfd.317742

Abstract

Son yıllarda, küresel ısınma ve enerji kaynaklarının verimli kullanılması en cazip konular haline gelmiştir. Ayrıca, yenilenebilir enerji teknolojileri, küresel enerji ve çevre sorunları açısından önemli bir rol oynamaktadır. Yenilenebilir enerji teknolojileri arasında, hidroelektrik dünya çapında 160'tan fazla ülkede elektrik üretimini belli bir düzeyde sağlayarak, en gelişmiş ve olgun olarak kabul edilmektedir. Mikro hidroelektrik santrali küçük ölçekli hidroelektrik projelerin kategorisindedir ve kırsal alan için uygun fiyatlı, güvenilir, sosyal açıdan kabul edilebilir, ekonomik ve çevre açısından duyarlı bir enerji alternatifi olarak sunulmaktadır. Bu makalede, gövde çarpmalı, üstten çarpmalı ve alttan çarpmalı gibi su çarkı sistemleri için mikro hidroelektrik teknolojilerinin tasarım ve performans özellikleri, güç kayıpları, mekanik güçler ve verimliliği ayrıntılı olarak gözden geçirilmiş ve birbirleriyle karşılaştırılmıştır. Buna ek olarak, tüm dünyada hidroelektrik kapasitesinin gelişmesi tartışılmış ve toplam kurulu güç açısından başta gelen ülkeler detaylı olarak incelenmiştir.

References

  • 1. Goričanec, D., Pozeb. V., Tomšič, L., Trop, P., 2014. Exploitation of the Waste-Heat from Hydro Power Plants. Energy, 77:220-225.
  • 2. Bilgili, M., Ozbek, A., Sahin, B., Kahraman, A., 2015. An Overview of Renewable Electric Power Capacity and Progress in New Technologies in the World. Renewable and Sustainable Energy Reviews, 49:323-334.
  • 3. El-Askary, W.A., Nasef, M.H., AbdEL-hamid, A.A., Gad, H.E., 2015. Harvesting Wind Energy for Improving Performance of Savonius Rotor. Journal of Wind Engineering and Industrial Aerodynamics, 139:8-15.
  • 4. Vermaak, H.J., Kusakana, K., Koko, S.P., 2014. Status of Micro-Hydrokinetic River Technology in Rural Applications: A Review of Literature. Renewable and Sustainable Energy Reviews, 29:625-633.
  • 5. Date, A., Akbarzadeh, A., 2009. Design and Cost Analysis of Low Head Simple Reaction Hydro Turbine for Remote Area Power Supply. Renewable Energy, 34:409-415.
  • 6. Panić, M., Urošev, M., Pešić, A.M., Brankov, J., Bjeljac, Z., 2013. Small Hydropower Plants in Serbia: Hydropower Potential, Current State and Perspectives. Renewable and Sustainable Energy Reviews, 23:341-349.
  • 7. Bahadori, A., Zahedi, G., Zendehboudi, S., 2013. An Overview of Australia’s Hydropower Energy: Status and Future Prospects. Renewable and Sustainable Energy Reviews, 20:565-569.
  • 8. Xu, J., Ni, T., Zheng, B., 2015. Hydropower Development Trends from a Technological Paradigm Perspective. Energy Conversion and Management, 90:195-206.
  • 9. Laghari, J.A., Mokhlis, H., Bakar, A.H.A., Mohammad, H., 2013. A Comprehensive Overview of New Designs in the Hydraulic, Electrical Equipments and Controllers of Mini Hydro Power Plants Making it Cost Effective Technology. Renewable and Sustainable Energy Reviews, 20:279-293.
  • 10. Fernando, J.N., Rival, D.E., 2014. Characterizing the Influence of Upstream Obstacles on Very Low Head Water-Turbine Performance Journal of Hydraulic Research, 52:644-652.
  • 11. Paudel, S., Linton, N., Zanke, U.C.E., Saenger, N. 2013. Experimental Investigation on the Effect of Channel Width on Flexible Rubber Blade Water Wheel Performance. Renewable Energy, 52:1-7.
  • 12. REN21, Renewable Energy Policy Network for the 21st Century, Renewables 2015 Global Status Report, 2015, http://www.ren21.net.
  • 13. IEA, International Energy Agency, Technology Roadmap, Hydropower, http://www.iea.org/
  • 14. IEA, International Energy Agency, Renewable Energy Essentials, Hydropower, http://www.iea.org/
  • 15. Kaunda, C.S., Kimambo, C.Z., Nielsen, T.K., 2014. A Technical Discussion on Microhydropower Technology and its Turbines. Renewable and Sustainable Energy Reviews 35:445-459.
  • 16. Nasir, B.A., 2014. Design Considerations of Micro-Hydro-Electric Power Plant, Energy Procedia 50:19-29.
  • 17. Okot, D.K., 2013. Review of Small Hydropower Technology. Renewable and Sustainable Energy Reviews, 26:515-520.
  • 18. Kentel, E., Alp, E., 2013. Hydropower in Turkey: Economical, Social and Environmental Aspects and Legal Challenges. Environmental Science and Policiy, 31:34-43.
  • 19. Quaranta, E., Revelli, R., 2015. Output Power and Power Losses Estimation for an Overshot Water Wheel. Renewable Energy, 83:979-987.
  • 20. Paudel, S., Linton, N., Zanke, U.C.E., Saenger N., 2013. Experimental Investigation on the Effect of Channel width on Flexible Rubber Blade Water Wheel Performance. Renewable Energy, 52:1-7.
  • 21. Quaranta, E., Revelli, R., 2015. Performance Characteristics, Power Losses and Mechanical Power Estimation for a Breastshot Water Wheel. Energy, 87:315-325.
  • 22. Denny, M., 2004. The Efficiency of Overshot and Undershot Waterwheels. European Journal of Physics, 25:193-202.
  • 23. Senior, J., Saenger, N., Müller, G., 2010. New Hydropower Converters for Very Low-Head Differences. Journal of Hydraulic Research, 48(6):703-714.
There are 23 citations in total.

Details

Journal Section Articles
Authors

Mehmet Bilgili This is me

Arif Ozbek

Publication Date June 15, 2016
Published in Issue Year 2016 Volume: 31 Issue: 1

Cite

APA Bilgili, M., & Ozbek, A. (2016). Mikro-Hidroelektrik Teknolojileri ve Su Çarkı Sistemlerinin Tasarım Özelliklerine Genel Bir Bakış. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(1), 117-134. https://doi.org/10.21605/cukurovaummfd.317742
AMA Bilgili M, Ozbek A. Mikro-Hidroelektrik Teknolojileri ve Su Çarkı Sistemlerinin Tasarım Özelliklerine Genel Bir Bakış. cukurovaummfd. June 2016;31(1):117-134. doi:10.21605/cukurovaummfd.317742
Chicago Bilgili, Mehmet, and Arif Ozbek. “Mikro-Hidroelektrik Teknolojileri Ve Su Çarkı Sistemlerinin Tasarım Özelliklerine Genel Bir Bakış”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31, no. 1 (June 2016): 117-34. https://doi.org/10.21605/cukurovaummfd.317742.
EndNote Bilgili M, Ozbek A (June 1, 2016) Mikro-Hidroelektrik Teknolojileri ve Su Çarkı Sistemlerinin Tasarım Özelliklerine Genel Bir Bakış. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31 1 117–134.
IEEE M. Bilgili and A. Ozbek, “Mikro-Hidroelektrik Teknolojileri ve Su Çarkı Sistemlerinin Tasarım Özelliklerine Genel Bir Bakış”, cukurovaummfd, vol. 31, no. 1, pp. 117–134, 2016, doi: 10.21605/cukurovaummfd.317742.
ISNAD Bilgili, Mehmet - Ozbek, Arif. “Mikro-Hidroelektrik Teknolojileri Ve Su Çarkı Sistemlerinin Tasarım Özelliklerine Genel Bir Bakış”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31/1 (June 2016), 117-134. https://doi.org/10.21605/cukurovaummfd.317742.
JAMA Bilgili M, Ozbek A. Mikro-Hidroelektrik Teknolojileri ve Su Çarkı Sistemlerinin Tasarım Özelliklerine Genel Bir Bakış. cukurovaummfd. 2016;31:117–134.
MLA Bilgili, Mehmet and Arif Ozbek. “Mikro-Hidroelektrik Teknolojileri Ve Su Çarkı Sistemlerinin Tasarım Özelliklerine Genel Bir Bakış”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 31, no. 1, 2016, pp. 117-34, doi:10.21605/cukurovaummfd.317742.
Vancouver Bilgili M, Ozbek A. Mikro-Hidroelektrik Teknolojileri ve Su Çarkı Sistemlerinin Tasarım Özelliklerine Genel Bir Bakış. cukurovaummfd. 2016;31(1):117-34.