Research Article
BibTex RIS Cite

Effects of Superstructure Properties on Pile Forces in Straight Integral Bridges under Live Load

Year 2017, Volume: 32 Issue: 2, 195 - 206, 15.06.2017
https://doi.org/10.21605/cukurovaummfd.358424

Abstract

In this study, the effects of truck loads on pile forces for straight integral bridges is investigated together
with the variations in superstructure parameters. For this purpose, finite element models of numerous
three-dimensional integral bridges are built and the analyses are conducted under AASHTO LRFD live
loads. Truck loads are located in various longitudinal and transverse positions on the bridge in order to
get the most critical loading. In the analyses, the superstructure parameters such as bridge length, girder
type, girder spacing, number of girders, slab thickness and cantilever length are considered and the pile
forces for all these bridges are obtained. The analyses results reveal that all the superstructure parameters
except girder type and slab length have significant effect on pile forces. Additionally, in almost all
bridges, for some load cases tension forces in piles are observed. 

References

  • 1. Burke, M.P. Jr., 2009. Integral and Semi-Integral Bridges, John Wiley and Sons, West Sussex, UK
  • 2. Franchin, P., Pinto, P.E., 2014. Performancebased Seismic Design of Integral Abutment Bridges, Bulletin of Earthquake Engineering, 12, 939-60.
  • 3. Erhan, S., Dicleli, M., 2015. Comparative Assessment of the Seismic Performance of Integral and Conventional Bridges with Respect to the Differences at the Abutments, Bulletin of Earthquake Engineering, 13, 653-77.
  • 4. White, H., Pétursson, H., Collin, P., 2010. Integral Abutment Bridges: the European Way, Practice Periodical on Structural Design and Construction, 15, 201-8.
  • 5. David, T.K., Forth, J.P., Ye, J., 2014. Superstructure Behavior of a Stub-Type Integral Abutment Bridge, Journal of Bridge Engineering, 19, 04014012.
  • 6. Feldmann, M., Pak, D., Hechler, O., Martin, P.O., 2011. A Methodology for Modelling the Integral Abutment Behaviour of NonSymmetrically Loaded Bridges, Structural Engineering International, 21, 311-9.
  • 7. AASHTO LRFD Bridge Design Specifications. 2014, 6th ed. Washington DC.
  • 8. Yousif, Z., Hindi, R., 2007. AASHTO-LRFD Live Load Distribution for Beam-and-slab Bridges: Limitations and Applicability, Journal of Bridge Engineering, 12, 765-73.
  • 9. Imbsen, R.A., Nutt, R.V., 1978. Load Distribution Study on Highway Bridges using STRUDL Finite Element Analysis Capabilities, Proceedings of Conference on Computing in Civil Engineering, ASCE, New York.
  • 10. Hays, C.O., Sessions, L.M., Berry, A.J., 1986. Further Studies on Lateral Load Distribution using a Finite Element Method, Transportation Research Record, Vol. 1072, pp. 6-14.
  • 11. Zokaie, T., 2000. AASHTO-LRFD Live Load Distribution Specifications, Journal of Bridge Engineering, Vol. 5, pp. 131-138.
  • 12. Tarhini, K.M., Frederick, R.G., 1992. Wheel Load Distribution in I-girder Highway Bridges, Journal of Structural Engineering, Vol. 118, pp. 1285-95.
  • 13. Mabsout, M.E., Tarhini, K.M., Frederick, G.R., Tayar, C., 1997. Finite Element Analysis of Steel Girder Highway Bridges, Journal of Bridge Engineering, 2, 83-7.
  • 14. Dicleli, M., Albhaisi, S.M., 2003. Maximum Length of Integral Abutment Bridges Supported on Steel h-piles Driven in Sand, Engineering Structures, 25, 1491-504.
  • 15.Brooke Q.H., Civjan A.S., 2016. Parametric Study on Effects of Pile Orientation in Integral Abutment Bridges, Journal of Bridge Engineering, 04016132.
  • 16. Husain, I., Bagnariol, D., 1996. Integral-abutment Bridges, Ontario Ministry of Transportation Report SO-96-01, St. Catharines, Ontario, Canada.
  • 17. Mourad, S., Tabsh, W.S., 1998. Pile Forces in Integral Abutment Bridges Subjected to Truck Loads, Transportation Research Record: Journal of the Transportation Research Board 1633, 77-83.
  • 18. Dicleli, M., Erhan, S., 2008. Effect of Soil and Substructure Properties on Live Load Distribution in Integral Abutment Bridges, Journal of Bridge Engineering, 13, 527-39.
  • 19. Dicleli, M., Erhan, S., 2009. Live Load Distribution Formulae for Single Span Prestressed Concrete Integral Abutment Bridge Girders, Journal of Bridge Engineering, 14, 472-486.
  • 20. Erhan, S., Dicleli, M., 2009. Live Load Distribution Equations for Integral Bridge Substructures, Engineering Structures, 31, 1250-64.
  • 21. Yalcin, O.F., Dicleli, M., 2013. Comparative Study on the Effect of Number of Girders on Live Load Distribution in Integral Abutment and Simply Supported Bridge Girders, Advances in Structural Engineering, 16, 1011-34.
  • 22. Dicleli, M., Yalcin, O.F., 2014. Critical Truck Loading Pattern to Maximize Live Load Effects in Skewed Integral Bridges, Structural Engineering International, 2, 265-74.
  • 23. Yalcin, O. F., 2017. A Comparative Study of Live Load Distribution in SKEWED Integral and Simply Supported Bridges, KSCE Journal of Civil Engineering, 1-13.
  • 24. SAP2000, 2014. Integrated Finite Element Analysis and Design of Structures. Berkeley (CA): Computers and Structures Inc.
  • 25.Brockenbrough, R.L., 1986. Distribution Factors for Curved I-girder Bridges. Journal of Structural Engineering, 112, pp. 2200-15.
  • 26.Cook, R.D., 1995. Finite Element Modeling for Stress Analysis, New York, John Wiley & Sons.

İntegral Köprülerde Hareketli Yükler Altında Üstyapı Özelliklerinin Kazık Kuvvetlerine Etkisi

Year 2017, Volume: 32 Issue: 2, 195 - 206, 15.06.2017
https://doi.org/10.21605/cukurovaummfd.358424

Abstract

Bu çalışmada, integral köprülerin kazıklarında oluşan kuvvetlere hareketli yüklerin etkisi, çeşitli üstyapı
parametrelerinin değişimleriyle birlikte incelenmiştir. Bu amaçla, birçok üç boyutlu integral köprünün
sonlu elemanlar modelleri kurulmuştur. Bu modellerin analizleri AASHTO LRFD hareketli yükleri
altında yapılmıştır. Hareketli yükler en kritik etkileri bulabilmek için köprüler üzerinde enine ve boyuna
yönde farklı konumlara yerleştirilmişlerdir. Analizlerde köprü uzunluğu, kiriş boyutu ve aralığı, kiriş
adedi, tabliye kalınlığı ve konsol uzunluğu gibi çeşitli üstyapı parametreleri ele alınmıştır. Sonlu
elemanlar analizleri sonucunda farklı parametrelere bağlı kazık kuvvetleri elde edilmiştir. Analizler
sonucunda, kiriş tipi ve tabliye kalınlığı dışındaki parametrelerinin kazık kuvvetlerini önemli ölçüde
etkiledikleri gözlenmiştir. Ayrıca, ele alınan birçok köprüde yükleme durumlarına bağlı olarak bazı
kazıklarda çekme kuvveti oluşmuştur.

References

  • 1. Burke, M.P. Jr., 2009. Integral and Semi-Integral Bridges, John Wiley and Sons, West Sussex, UK
  • 2. Franchin, P., Pinto, P.E., 2014. Performancebased Seismic Design of Integral Abutment Bridges, Bulletin of Earthquake Engineering, 12, 939-60.
  • 3. Erhan, S., Dicleli, M., 2015. Comparative Assessment of the Seismic Performance of Integral and Conventional Bridges with Respect to the Differences at the Abutments, Bulletin of Earthquake Engineering, 13, 653-77.
  • 4. White, H., Pétursson, H., Collin, P., 2010. Integral Abutment Bridges: the European Way, Practice Periodical on Structural Design and Construction, 15, 201-8.
  • 5. David, T.K., Forth, J.P., Ye, J., 2014. Superstructure Behavior of a Stub-Type Integral Abutment Bridge, Journal of Bridge Engineering, 19, 04014012.
  • 6. Feldmann, M., Pak, D., Hechler, O., Martin, P.O., 2011. A Methodology for Modelling the Integral Abutment Behaviour of NonSymmetrically Loaded Bridges, Structural Engineering International, 21, 311-9.
  • 7. AASHTO LRFD Bridge Design Specifications. 2014, 6th ed. Washington DC.
  • 8. Yousif, Z., Hindi, R., 2007. AASHTO-LRFD Live Load Distribution for Beam-and-slab Bridges: Limitations and Applicability, Journal of Bridge Engineering, 12, 765-73.
  • 9. Imbsen, R.A., Nutt, R.V., 1978. Load Distribution Study on Highway Bridges using STRUDL Finite Element Analysis Capabilities, Proceedings of Conference on Computing in Civil Engineering, ASCE, New York.
  • 10. Hays, C.O., Sessions, L.M., Berry, A.J., 1986. Further Studies on Lateral Load Distribution using a Finite Element Method, Transportation Research Record, Vol. 1072, pp. 6-14.
  • 11. Zokaie, T., 2000. AASHTO-LRFD Live Load Distribution Specifications, Journal of Bridge Engineering, Vol. 5, pp. 131-138.
  • 12. Tarhini, K.M., Frederick, R.G., 1992. Wheel Load Distribution in I-girder Highway Bridges, Journal of Structural Engineering, Vol. 118, pp. 1285-95.
  • 13. Mabsout, M.E., Tarhini, K.M., Frederick, G.R., Tayar, C., 1997. Finite Element Analysis of Steel Girder Highway Bridges, Journal of Bridge Engineering, 2, 83-7.
  • 14. Dicleli, M., Albhaisi, S.M., 2003. Maximum Length of Integral Abutment Bridges Supported on Steel h-piles Driven in Sand, Engineering Structures, 25, 1491-504.
  • 15.Brooke Q.H., Civjan A.S., 2016. Parametric Study on Effects of Pile Orientation in Integral Abutment Bridges, Journal of Bridge Engineering, 04016132.
  • 16. Husain, I., Bagnariol, D., 1996. Integral-abutment Bridges, Ontario Ministry of Transportation Report SO-96-01, St. Catharines, Ontario, Canada.
  • 17. Mourad, S., Tabsh, W.S., 1998. Pile Forces in Integral Abutment Bridges Subjected to Truck Loads, Transportation Research Record: Journal of the Transportation Research Board 1633, 77-83.
  • 18. Dicleli, M., Erhan, S., 2008. Effect of Soil and Substructure Properties on Live Load Distribution in Integral Abutment Bridges, Journal of Bridge Engineering, 13, 527-39.
  • 19. Dicleli, M., Erhan, S., 2009. Live Load Distribution Formulae for Single Span Prestressed Concrete Integral Abutment Bridge Girders, Journal of Bridge Engineering, 14, 472-486.
  • 20. Erhan, S., Dicleli, M., 2009. Live Load Distribution Equations for Integral Bridge Substructures, Engineering Structures, 31, 1250-64.
  • 21. Yalcin, O.F., Dicleli, M., 2013. Comparative Study on the Effect of Number of Girders on Live Load Distribution in Integral Abutment and Simply Supported Bridge Girders, Advances in Structural Engineering, 16, 1011-34.
  • 22. Dicleli, M., Yalcin, O.F., 2014. Critical Truck Loading Pattern to Maximize Live Load Effects in Skewed Integral Bridges, Structural Engineering International, 2, 265-74.
  • 23. Yalcin, O. F., 2017. A Comparative Study of Live Load Distribution in SKEWED Integral and Simply Supported Bridges, KSCE Journal of Civil Engineering, 1-13.
  • 24. SAP2000, 2014. Integrated Finite Element Analysis and Design of Structures. Berkeley (CA): Computers and Structures Inc.
  • 25.Brockenbrough, R.L., 1986. Distribution Factors for Curved I-girder Bridges. Journal of Structural Engineering, 112, pp. 2200-15.
  • 26.Cook, R.D., 1995. Finite Element Modeling for Stress Analysis, New York, John Wiley & Sons.
There are 26 citations in total.

Details

Journal Section Articles
Authors

Ömer Fatih Yalçın This is me

Publication Date June 15, 2017
Published in Issue Year 2017 Volume: 32 Issue: 2

Cite

APA Yalçın, Ö. F. (2017). İntegral Köprülerde Hareketli Yükler Altında Üstyapı Özelliklerinin Kazık Kuvvetlerine Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(2), 195-206. https://doi.org/10.21605/cukurovaummfd.358424
AMA Yalçın ÖF. İntegral Köprülerde Hareketli Yükler Altında Üstyapı Özelliklerinin Kazık Kuvvetlerine Etkisi. cukurovaummfd. June 2017;32(2):195-206. doi:10.21605/cukurovaummfd.358424
Chicago Yalçın, Ömer Fatih. “İntegral Köprülerde Hareketli Yükler Altında Üstyapı Özelliklerinin Kazık Kuvvetlerine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32, no. 2 (June 2017): 195-206. https://doi.org/10.21605/cukurovaummfd.358424.
EndNote Yalçın ÖF (June 1, 2017) İntegral Köprülerde Hareketli Yükler Altında Üstyapı Özelliklerinin Kazık Kuvvetlerine Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32 2 195–206.
IEEE Ö. F. Yalçın, “İntegral Köprülerde Hareketli Yükler Altında Üstyapı Özelliklerinin Kazık Kuvvetlerine Etkisi”, cukurovaummfd, vol. 32, no. 2, pp. 195–206, 2017, doi: 10.21605/cukurovaummfd.358424.
ISNAD Yalçın, Ömer Fatih. “İntegral Köprülerde Hareketli Yükler Altında Üstyapı Özelliklerinin Kazık Kuvvetlerine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32/2 (June 2017), 195-206. https://doi.org/10.21605/cukurovaummfd.358424.
JAMA Yalçın ÖF. İntegral Köprülerde Hareketli Yükler Altında Üstyapı Özelliklerinin Kazık Kuvvetlerine Etkisi. cukurovaummfd. 2017;32:195–206.
MLA Yalçın, Ömer Fatih. “İntegral Köprülerde Hareketli Yükler Altında Üstyapı Özelliklerinin Kazık Kuvvetlerine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 32, no. 2, 2017, pp. 195-06, doi:10.21605/cukurovaummfd.358424.
Vancouver Yalçın ÖF. İntegral Köprülerde Hareketli Yükler Altında Üstyapı Özelliklerinin Kazık Kuvvetlerine Etkisi. cukurovaummfd. 2017;32(2):195-206.