Research Article
BibTex RIS Cite

Feedforward Friction Compensator Design for Shake Table System

Year 2019, Volume: 34 Issue: 1, 255 - 264, 31.03.2019
https://doi.org/10.21605/cukurovaummfd.601465

Abstract

This study deals with the design of feedforward compensator for the shake table system via Higher Order Sinusoidal Input Describing Functions (HOSIDFs) in order to reduce the performance degrading effect of the friction existing in the system. In this study, HOSIDFs are used to analyze the effect of Coulomb type friction on the output of the system. The study consists of implementation and design of feedforward compensator whose coefficients are calculated via HOSIDF based cost function given in the study. The study also involves harmonic plots and time-domain result of the system output which is the position of the shake table in order to illustrate the effect of the proposed feedforward compensator which improves the reference tracking performance via the reduction of the friction effect in the shake table system.

References

  • 1. Canudas, C., Lischinsky, P., 1998. Adaptive Friction Compensation with Partially Known Dynamic Friction Model. International Journal of Adaptive Control and Signal Processing, 11(1), 65-80.
  • 2. Tan, K.K., Huang, S.N., Lee, T.H., 2002. Robust Adaptive Numerical Compensation for Friction and Force Ripple in Permanent-magnet Linear Motors. IEEE Transactions on Magnetics, 38(1), 221-228.
  • 3. Jamaludin, Z., Van Brussel, H., Swevers, J., 2009. Friction Compensation of a XY Feed Table Using Friction-Model-Based Feedforward and an Inverse Model Based Disturbance Observer. IEEE Transactions on Industrial Electronics, 56(10), 3848-3853.
  • 4. Freidovich, L., Robertsson, A., Shiriaev, A., Johansson, R., 2010. LuGre-Model-Based Friction Compensation. IEEE Transactions on Control Systems Technology, 18(1), 194-200.
  • 5. Grimble, M.J., 2005. Non-linear Generalized Minimum Variance Feedback, Feedforward and Tracking Control. Automatica, 41, 957-969.
  • 6. Graichen, K., Hagenmeyer, V., Zeitz, M., 2005. A New Approach to Inversion-based Feedforward Control Design for Nonlinear Systems. Automatica, 41(12), 2033-2041.
  • 7. Mandra, S., Galkowski, K., Aschemann, H., 2017. Robust Guaranteed Cost ILC with Dynamic Feedforward and Disturbance Compensation for Accurate PMSM Position Control. Control Engineering Practice, 65, 36-47.
  • 8. Lambrechts, P., Boerlage, M., Steinbuch, M., 2005. Trajectory Planning and Feedforward Design for Electromechanical Motion Systems. Control Engineering Practice, 13(2), 145-157.
  • 9. Malchow, F., Sawodny, O., 2012. Model Based Feedforward Control of an Industrial Glass Feeder, Control Engineering Practice, 20, 62-68.
  • 10. Nuij, P., Bosgra, O.H., Steinbuch, M., 2006. Higher Order Sinusoidal Input Describing Functions for the Analysis of Non-linear Systems with Harmonic Responses. Mechanical Systems and Signal Processing, 20, 1883-1904.
  • 11. Rijlaarsdam, D., Setiadi, A.C., Nuij, P., Schoukens, J., Steinbuch, M., 2013. Frequency Domain-based Nonlinearity Detection and Compensation in Lur’e Systems. International Journal of Robust and Nonlinear Control, 23, 1168-1182.
  • 12. Rijlaarsdam, D., Nuij, P., Schoukens, J., Steinbuch, M., 2012. Frequency Domain Based Nonlinear Feed Forward Control Design for Friction Compensation. Mechanical Systems and Signal Processing, 27, 551-562.
  • 13. Ucun, L., Salasek, J., 2014. HOSIDF-based Feedforward Friction Compensation in low-velocity Motion Control Systems. Mechatronics, 24, 118-127.
  • 14. Rijlaarsdam, D., Nuij, P., Schoukens, J., Steinbuch, M., 2011. Frequency Domain Based Friction Compensation Industrial Application to Transmission Electron Microscopes. Proceedings of the 2011 American Control Conference, San Francisco, CA, 4093-4098.
  • 15. Rijlaarsdam, D., Nuij, P., Schoukens, J., Steinbuch, M., 2017. A Comparative Overview of Frequency Domain Methods for Nonlinear Systems. Mechatronics, 42, 11-24.

Titreşim Masası Sisteminde Sürtünme Etkisini Azaltan İleri Beslemeli Kompanzatör Tasarımı

Year 2019, Volume: 34 Issue: 1, 255 - 264, 31.03.2019
https://doi.org/10.21605/cukurovaummfd.601465

Abstract

Bu çalışmada, yüksek mertebeli sinüzoidal tanımlama fonksiyonları kullanılarak titreşim masası sisteminde etkin olan mekanik sürtünmenin sistemin referans takip performansını azaltan etkisini düşürmek üzere ileri beslemeli bir kompanzatör tasarımı ele alınmıştır. Çalışmada, yüksek mertebeli sinüzoidal tanımlama fonksiyonları sistemde bulunan ve Coulomb tipi olarak ifade edilen mekanik sürtünmenin sistem çıkışına olan etkisini analiz etmek amacıyla kullanılmıştır. Bu çalışma, ilerleyen  bölümlerde detaylı olarak verilen bir maliyet fonksiyonu üzerinden hesaplanan ileri beslemeli kompanzatörün tasarımı ve sisteme uygulanmasını içermektedir. Ayrıca çalışmada tasarlanan kompanzatörün sistemdeki sürtünme etkisini azaltarak sistemin referans takip performansını iyileştirdiğini göstermek üzere titreşim masasının hareket eden üst tablasının pozisyonu olan sistem çıkışının harmonik grafiklerine ve zaman cevaplarına da yer verilmiştir.

References

  • 1. Canudas, C., Lischinsky, P., 1998. Adaptive Friction Compensation with Partially Known Dynamic Friction Model. International Journal of Adaptive Control and Signal Processing, 11(1), 65-80.
  • 2. Tan, K.K., Huang, S.N., Lee, T.H., 2002. Robust Adaptive Numerical Compensation for Friction and Force Ripple in Permanent-magnet Linear Motors. IEEE Transactions on Magnetics, 38(1), 221-228.
  • 3. Jamaludin, Z., Van Brussel, H., Swevers, J., 2009. Friction Compensation of a XY Feed Table Using Friction-Model-Based Feedforward and an Inverse Model Based Disturbance Observer. IEEE Transactions on Industrial Electronics, 56(10), 3848-3853.
  • 4. Freidovich, L., Robertsson, A., Shiriaev, A., Johansson, R., 2010. LuGre-Model-Based Friction Compensation. IEEE Transactions on Control Systems Technology, 18(1), 194-200.
  • 5. Grimble, M.J., 2005. Non-linear Generalized Minimum Variance Feedback, Feedforward and Tracking Control. Automatica, 41, 957-969.
  • 6. Graichen, K., Hagenmeyer, V., Zeitz, M., 2005. A New Approach to Inversion-based Feedforward Control Design for Nonlinear Systems. Automatica, 41(12), 2033-2041.
  • 7. Mandra, S., Galkowski, K., Aschemann, H., 2017. Robust Guaranteed Cost ILC with Dynamic Feedforward and Disturbance Compensation for Accurate PMSM Position Control. Control Engineering Practice, 65, 36-47.
  • 8. Lambrechts, P., Boerlage, M., Steinbuch, M., 2005. Trajectory Planning and Feedforward Design for Electromechanical Motion Systems. Control Engineering Practice, 13(2), 145-157.
  • 9. Malchow, F., Sawodny, O., 2012. Model Based Feedforward Control of an Industrial Glass Feeder, Control Engineering Practice, 20, 62-68.
  • 10. Nuij, P., Bosgra, O.H., Steinbuch, M., 2006. Higher Order Sinusoidal Input Describing Functions for the Analysis of Non-linear Systems with Harmonic Responses. Mechanical Systems and Signal Processing, 20, 1883-1904.
  • 11. Rijlaarsdam, D., Setiadi, A.C., Nuij, P., Schoukens, J., Steinbuch, M., 2013. Frequency Domain-based Nonlinearity Detection and Compensation in Lur’e Systems. International Journal of Robust and Nonlinear Control, 23, 1168-1182.
  • 12. Rijlaarsdam, D., Nuij, P., Schoukens, J., Steinbuch, M., 2012. Frequency Domain Based Nonlinear Feed Forward Control Design for Friction Compensation. Mechanical Systems and Signal Processing, 27, 551-562.
  • 13. Ucun, L., Salasek, J., 2014. HOSIDF-based Feedforward Friction Compensation in low-velocity Motion Control Systems. Mechatronics, 24, 118-127.
  • 14. Rijlaarsdam, D., Nuij, P., Schoukens, J., Steinbuch, M., 2011. Frequency Domain Based Friction Compensation Industrial Application to Transmission Electron Microscopes. Proceedings of the 2011 American Control Conference, San Francisco, CA, 4093-4098.
  • 15. Rijlaarsdam, D., Nuij, P., Schoukens, J., Steinbuch, M., 2017. A Comparative Overview of Frequency Domain Methods for Nonlinear Systems. Mechatronics, 42, 11-24.
There are 15 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Levent Ucun

Publication Date March 31, 2019
Published in Issue Year 2019 Volume: 34 Issue: 1

Cite

APA Ucun, L. (2019). Feedforward Friction Compensator Design for Shake Table System. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(1), 255-264. https://doi.org/10.21605/cukurovaummfd.601465
AMA Ucun L. Feedforward Friction Compensator Design for Shake Table System. cukurovaummfd. March 2019;34(1):255-264. doi:10.21605/cukurovaummfd.601465
Chicago Ucun, Levent. “Feedforward Friction Compensator Design for Shake Table System”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34, no. 1 (March 2019): 255-64. https://doi.org/10.21605/cukurovaummfd.601465.
EndNote Ucun L (March 1, 2019) Feedforward Friction Compensator Design for Shake Table System. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34 1 255–264.
IEEE L. Ucun, “Feedforward Friction Compensator Design for Shake Table System”, cukurovaummfd, vol. 34, no. 1, pp. 255–264, 2019, doi: 10.21605/cukurovaummfd.601465.
ISNAD Ucun, Levent. “Feedforward Friction Compensator Design for Shake Table System”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34/1 (March 2019), 255-264. https://doi.org/10.21605/cukurovaummfd.601465.
JAMA Ucun L. Feedforward Friction Compensator Design for Shake Table System. cukurovaummfd. 2019;34:255–264.
MLA Ucun, Levent. “Feedforward Friction Compensator Design for Shake Table System”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 34, no. 1, 2019, pp. 255-64, doi:10.21605/cukurovaummfd.601465.
Vancouver Ucun L. Feedforward Friction Compensator Design for Shake Table System. cukurovaummfd. 2019;34(1):255-64.