In this study, cherry kernel shell pyrolytic charcoal (CKSC) was obtained and chitosan/pyrolitic charcoal (C-CKSC) composite beads were synthesized by mixing this pyrolytic charcoal with chitosan and forming beads. Then, Cr(VI) adsorption of CKSC and C-CKSC beads from aqueous solutions has been studied comparatively. As a result of batch adsorption experiments; the optimum adsorbent amounts for Cr(VI) adsorption are 5 g/L for CKSC and 1.5 g/L for C-CKSC; optimum pHs are 1.56 and 2 for CKSC and C-CKSC respectively; optimum contact time is 120 minutes. The adsorption equilibrium data fitted well with Langmuir isotherm model for CKSC and C-CKSC adsorbents. The maximum adsorption capacities from this isotherm model were calculated as 14.455 mg/g for CKSC and 86.298 mg/g for C-CKSC. Thermodynamic calculations have shown that the adsorption is endothermic and has spontaneous nature. As a result of calculations on the adsorption kinetics, adsorption was found to be consistent with the pseudo second order kinetic model. Characterizations of the synthesized adsorbents were performed by SEM/EDX, BET, FTIR and elemental analysis. SEM/EDX and FTIR analysis proved that Cr(VI) was adsorbed. This study has shown that CKSC and C-CKSC can be effective adsorbents at low cost for Cr(VI) removal from aqueous solutions.
Primary Language | Turkish |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | September 30, 2019 |
Published in Issue | Year 2019 Volume: 34 Issue: 3 |