Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigating the Interfacial Strength of Titanium and Fiber/Epoxy for The Alternative FML Composites

Yıl 2020, Cilt: 35 Sayı: 3, 813 - 820, 30.09.2020
https://doi.org/10.21605/cukurovaummfd.846802

Öz

Fiber-reinforced polymer composites provide high strength to weight ratio, resist to environmental effects, but they have poor impact strength due to brittleness. Therefore, researchers have developed fiber metal laminates (FMLs) particularly for aerospace, aviation and defence industries. FML composites combine the advantages of both metal alloys and fibers but eliminate their drawbacks. However, the bonding strength of fiber-metal interface plays an important role for effectiveness of FML composites. In this study, the interfacial strength values of TiGr2 series titanium sheets and ± 45º oriented fiber/epoxy composites (glass and carbon) were investigated by applying single lap shear tests based on ASTM D 5868. Epoxy based adhesive was used as a matrix during manufacturing for joining titanium sheets to composite laminates.

Kaynakça

  • 1. Shetty, N., Shahabaz, S.M., Sharma, S.S., Shetty, S.D., 2017. A Review on Finite Element Method for Machining of Composite Materials, Composite Structures, 176, 790-802.
  • 2. Chandrasekar, M., Ishak, M.R., Jawaid, M., Leman, Z., Sapuan, S.M., 2017. An Experimental Review on the Mechanical Properties and Hygrothermal Behaviour of Fibre Metal Laminates, Journal of Reinforced Plastics and Composites, 36(1), 72–82.
  • 3. Corte´s, P., Cantwell, W.J., 2006. The Prediction of Tensile Failure in Titanium-based Thermoplastic Fibre-metal Laminates, Composites Science and Technology, 66, 2306–2316.
  • 4. Remmers, J.C., 2006. Discontinuities in Materials and Structures: a Unifying Computational Approach, PhD Thesis, Delft University of Technology.
  • 5. Sinmazçelik, T., Avcu, E., Bora, M.Ö., Çoban, O., 2011. A Review: Fibre Metal Laminates, Background, Bonding Types and Applied Test Methods, Materials and Design, 32, 3671- 3685.
  • 6. Vlot, A., 1996. Impact Loading on Fibre Metal Laminates, Int J Impact Eng, 18(3), 291-307.
  • 7. Wang, W., Rans, C., Benedictus, R., 2017. Analytical Prediction Model for Non- symmetric Fatigue Crack Growth in Fibre Metal Laminates, International Journal of Fatigue, 103, 546–556.
  • 8. Vogelesang, L.B., Vlot, A., 2000. Development of Fibre Metal Laminates for Advanced Aerospace Structures, Journal of Materials Processing Technology, 103, 1-5.
  • 9. Sadighi, M., Alderliesten, R.C., Benedictus, R., 2014. Impact Resistance of Fiber-Metal Laminates: A Review, International Journal of Impact Engineering, 49, 77-90.
  • 10. Laliberte, J.F., Poon, C., Straznicky, P.V., Fahr, A., 2000. Applications of Fiber-Metal Laminates, Polymer Composites, 21, 558-567.
  • 11. Kazemi, M.E., Shanmugam, L., Yang, L., Yang, J., 2020. A Review on the Hybrid Titanium Composite Laminates (HTCLs) with Focuses on Surface Treatments, Fabrications, and Mechanical Properties, Composites Part A: Applied Science and Manufacturing, 128.
  • 12. Jin, K., Chen, K., Luo, X., Tao, J., 2020. Fatigue Crack Growth and Delamination Mechanisms of Ti/CFRP Fibre Metal Laminates at High Temperatures. Fatigue Fract Eng Mater Struct. 43: 1115–1125.
  • 13. Le Bourlegat, L., Damato, C., da Silva, D., Botelho, E., Pardini, L., 2010. Processing and Mechanical Characterization of Titanium- graphite Hybrid Laminates. Journal of Reinforced Plastics and Composites. 29(22), 3392-3400.
  • 14. Akman, M.Ö., Oztoprak, B.G., Kutluk, T., 2020. Comparison of Novel Surface Treatments of Al 2024 Alloy for al/cfrp Adhesive Bonded Joints, International Journal of Adhesion and Adhesives, 103, 102721.
  • 15. Logesh, K., Hariharasakthisudhan, P., Rajan, B.S., Moshi, A.A.M., Khalkar, V., 2020. Effect of Multi-walled Carbon Nano-tube on Mechanical Behavior of Glass Laminate Aluminum Reinforced Epoxy Composites. Polymer Composites. 1–12.
  • 16. Zhang, X., Hu, Y., Li, H., Tian, J., Fu, X., Xu, Y., Lu, Y., Chen, Y., Qin, L., Tao, J. 2018. Effect of Multi-walled Carbon Nanotubes Addition on the Interfacial Property of Titanium-based Fiber Metal Laminates. Polym. Compos., 39: E1159- E1168.
  • 17. ASTM D 5868-01. 2001. Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding, Annual Book of ASTM Standards.
  • 18. Caiwang, T., Jianhui, S., Baohua, Z., Xiaoting, L., Laijun, W., Bo, C., Xiaoguo, S., Jicai, F., 2020. Effect of Scanning Speed on Laser Joining of Carbon Fiber Reinforced PEEK to Titanium Alloy, Optics & Laser Technology, 129, 1-10.
  • 19. Boztepe, M.B., Bayramoglu, M., Uzay, C., Geren, N., 2017. Investigation of the Adhesion Bonding Capability Between Different Metals and FRP Composite Layers. Istanbul Internatıonal Conference on Progres in Applied Science, ICPAS 2017, 1-6.
  • 20. Nassier, A., Nassir, R.S., Birch, W.J., Cantwell, D., Rico Sierra, S.P., Edwardson, G., Dearden, Z.W. Guan., 2020. Experimental and numerical characterization of titanium-based fibre metal laminates, Composite Structures, 245.

Alternatif FML Kompozitler için Titanyum ve Elyaf/Epoksi Ara Yüzey Dayanımının İncelenmesi

Yıl 2020, Cilt: 35 Sayı: 3, 813 - 820, 30.09.2020
https://doi.org/10.21605/cukurovaummfd.846802

Öz

Elyaf takviyeli polimer kompozit yapılar, hafifliğin yanı sıra yüksek mukavemete sahip olup nem, korozyon gibi çevresel etmenlere karşı direnç gösterirler ancak ani darbe yüklerine karşı zayıf ve kırılgandır. Bu yüzden araştırmacılar özellikle uzay-havacılık ve savunma sanayi alanları için elyaf ve metal malzemeleri bir arada lamine ederek FML (Fiber Metal Laminate) kompozitleri geliştirmişlerdir. FML kompozitler elyaf ve metallerin avantajlarını bir araya getirirken dezavantajlarını ise elimine etmektedir. Fakat elyaf ve metal katmanların ara yüzey dayanımının tespiti FML kompozitin etkinliği üzerinde önemli rol oynamaktadır. Bu çalışmada metal olarak TiGR2 serisi titanyum ve elyaf olarak ±45º oryantasyonlu karbon ve cam kullanılarak ASTM D 5868 standardına göre üretilen kompozitlerin ara yüzey dayanımları araştırılmıştır. Vakum torbalama yöntemi ile üretilen elyaf kompozitlerde kullanılan epoksi matris malzemesi metal yüzeylerin yapıştırılmasında da kullanılmıştır.

Kaynakça

  • 1. Shetty, N., Shahabaz, S.M., Sharma, S.S., Shetty, S.D., 2017. A Review on Finite Element Method for Machining of Composite Materials, Composite Structures, 176, 790-802.
  • 2. Chandrasekar, M., Ishak, M.R., Jawaid, M., Leman, Z., Sapuan, S.M., 2017. An Experimental Review on the Mechanical Properties and Hygrothermal Behaviour of Fibre Metal Laminates, Journal of Reinforced Plastics and Composites, 36(1), 72–82.
  • 3. Corte´s, P., Cantwell, W.J., 2006. The Prediction of Tensile Failure in Titanium-based Thermoplastic Fibre-metal Laminates, Composites Science and Technology, 66, 2306–2316.
  • 4. Remmers, J.C., 2006. Discontinuities in Materials and Structures: a Unifying Computational Approach, PhD Thesis, Delft University of Technology.
  • 5. Sinmazçelik, T., Avcu, E., Bora, M.Ö., Çoban, O., 2011. A Review: Fibre Metal Laminates, Background, Bonding Types and Applied Test Methods, Materials and Design, 32, 3671- 3685.
  • 6. Vlot, A., 1996. Impact Loading on Fibre Metal Laminates, Int J Impact Eng, 18(3), 291-307.
  • 7. Wang, W., Rans, C., Benedictus, R., 2017. Analytical Prediction Model for Non- symmetric Fatigue Crack Growth in Fibre Metal Laminates, International Journal of Fatigue, 103, 546–556.
  • 8. Vogelesang, L.B., Vlot, A., 2000. Development of Fibre Metal Laminates for Advanced Aerospace Structures, Journal of Materials Processing Technology, 103, 1-5.
  • 9. Sadighi, M., Alderliesten, R.C., Benedictus, R., 2014. Impact Resistance of Fiber-Metal Laminates: A Review, International Journal of Impact Engineering, 49, 77-90.
  • 10. Laliberte, J.F., Poon, C., Straznicky, P.V., Fahr, A., 2000. Applications of Fiber-Metal Laminates, Polymer Composites, 21, 558-567.
  • 11. Kazemi, M.E., Shanmugam, L., Yang, L., Yang, J., 2020. A Review on the Hybrid Titanium Composite Laminates (HTCLs) with Focuses on Surface Treatments, Fabrications, and Mechanical Properties, Composites Part A: Applied Science and Manufacturing, 128.
  • 12. Jin, K., Chen, K., Luo, X., Tao, J., 2020. Fatigue Crack Growth and Delamination Mechanisms of Ti/CFRP Fibre Metal Laminates at High Temperatures. Fatigue Fract Eng Mater Struct. 43: 1115–1125.
  • 13. Le Bourlegat, L., Damato, C., da Silva, D., Botelho, E., Pardini, L., 2010. Processing and Mechanical Characterization of Titanium- graphite Hybrid Laminates. Journal of Reinforced Plastics and Composites. 29(22), 3392-3400.
  • 14. Akman, M.Ö., Oztoprak, B.G., Kutluk, T., 2020. Comparison of Novel Surface Treatments of Al 2024 Alloy for al/cfrp Adhesive Bonded Joints, International Journal of Adhesion and Adhesives, 103, 102721.
  • 15. Logesh, K., Hariharasakthisudhan, P., Rajan, B.S., Moshi, A.A.M., Khalkar, V., 2020. Effect of Multi-walled Carbon Nano-tube on Mechanical Behavior of Glass Laminate Aluminum Reinforced Epoxy Composites. Polymer Composites. 1–12.
  • 16. Zhang, X., Hu, Y., Li, H., Tian, J., Fu, X., Xu, Y., Lu, Y., Chen, Y., Qin, L., Tao, J. 2018. Effect of Multi-walled Carbon Nanotubes Addition on the Interfacial Property of Titanium-based Fiber Metal Laminates. Polym. Compos., 39: E1159- E1168.
  • 17. ASTM D 5868-01. 2001. Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding, Annual Book of ASTM Standards.
  • 18. Caiwang, T., Jianhui, S., Baohua, Z., Xiaoting, L., Laijun, W., Bo, C., Xiaoguo, S., Jicai, F., 2020. Effect of Scanning Speed on Laser Joining of Carbon Fiber Reinforced PEEK to Titanium Alloy, Optics & Laser Technology, 129, 1-10.
  • 19. Boztepe, M.B., Bayramoglu, M., Uzay, C., Geren, N., 2017. Investigation of the Adhesion Bonding Capability Between Different Metals and FRP Composite Layers. Istanbul Internatıonal Conference on Progres in Applied Science, ICPAS 2017, 1-6.
  • 20. Nassier, A., Nassir, R.S., Birch, W.J., Cantwell, D., Rico Sierra, S.P., Edwardson, G., Dearden, Z.W. Guan., 2020. Experimental and numerical characterization of titanium-based fibre metal laminates, Composite Structures, 245.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mete Han Boztepe Bu kişi benim

Melih Bayramoğlu Bu kişi benim

Çağrı Uzay Bu kişi benim

Necdet Geren Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 3

Kaynak Göster

APA Boztepe, M. H., Bayramoğlu, M., Uzay, Ç., Geren, N. (2020). Alternatif FML Kompozitler için Titanyum ve Elyaf/Epoksi Ara Yüzey Dayanımının İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(3), 813-820. https://doi.org/10.21605/cukurovaummfd.846802
AMA Boztepe MH, Bayramoğlu M, Uzay Ç, Geren N. Alternatif FML Kompozitler için Titanyum ve Elyaf/Epoksi Ara Yüzey Dayanımının İncelenmesi. cukurovaummfd. Eylül 2020;35(3):813-820. doi:10.21605/cukurovaummfd.846802
Chicago Boztepe, Mete Han, Melih Bayramoğlu, Çağrı Uzay, ve Necdet Geren. “Alternatif FML Kompozitler için Titanyum Ve Elyaf/Epoksi Ara Yüzey Dayanımının İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, sy. 3 (Eylül 2020): 813-20. https://doi.org/10.21605/cukurovaummfd.846802.
EndNote Boztepe MH, Bayramoğlu M, Uzay Ç, Geren N (01 Eylül 2020) Alternatif FML Kompozitler için Titanyum ve Elyaf/Epoksi Ara Yüzey Dayanımının İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 3 813–820.
IEEE M. H. Boztepe, M. Bayramoğlu, Ç. Uzay, ve N. Geren, “Alternatif FML Kompozitler için Titanyum ve Elyaf/Epoksi Ara Yüzey Dayanımının İncelenmesi”, cukurovaummfd, c. 35, sy. 3, ss. 813–820, 2020, doi: 10.21605/cukurovaummfd.846802.
ISNAD Boztepe, Mete Han vd. “Alternatif FML Kompozitler için Titanyum Ve Elyaf/Epoksi Ara Yüzey Dayanımının İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/3 (Eylül 2020), 813-820. https://doi.org/10.21605/cukurovaummfd.846802.
JAMA Boztepe MH, Bayramoğlu M, Uzay Ç, Geren N. Alternatif FML Kompozitler için Titanyum ve Elyaf/Epoksi Ara Yüzey Dayanımının İncelenmesi. cukurovaummfd. 2020;35:813–820.
MLA Boztepe, Mete Han vd. “Alternatif FML Kompozitler için Titanyum Ve Elyaf/Epoksi Ara Yüzey Dayanımının İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 35, sy. 3, 2020, ss. 813-20, doi:10.21605/cukurovaummfd.846802.
Vancouver Boztepe MH, Bayramoğlu M, Uzay Ç, Geren N. Alternatif FML Kompozitler için Titanyum ve Elyaf/Epoksi Ara Yüzey Dayanımının İncelenmesi. cukurovaummfd. 2020;35(3):813-20.