Research Article
BibTex RIS Cite

Timokinon metotreksatın neden olduğu kalp hasarını azaltır: sıçanlarda histopatolojik bir çalışma

Year 2023, , 844 - 851, 30.09.2023
https://doi.org/10.17826/cumj.1314101

Abstract

Amaç: Bu çalışmada, sıçanlarda MTX ile indüklenen kardiyak toksisitede timokinonun kardiyak doku üzerindeki etkisinin çeşitli parametrelerle değerlendirilmesi amaçlanmıştır.
Gereç ve Yöntem: Grup I'e (n=8) 10 gün boyunca intraperitoneal salin uygulandı. Grup II'ye (n=8) 10 gün boyunca intraperitoneal zeytinyağı uygulandı. Grup III (n=8) 10 gün boyunca 10 mg/kg timokinon (THQ) intraperitoneal olarak almıştır. Grup IV'e (n=8) deneyin 1. gününde tek doz 20 mg/kg Metotreksat (MTX), 500 mg/20 ml, intraperitoneal olarak uygulandı. Metotreksat sıvı formda olduğu için herhangi bir çözücü kullanılmamıştır. Grup V (n=8) MTX: 1. gün 20 mg/kg tek doz intraperitoneal; THQ: 10mg/kg i.p. 10 gün boyunca uygulandı. Deney süresinin sonunda sıçanlar kalp dokusu analizi için sakrifiye edilmiştir. Kalp dokusunun yapısı hematoksilen-eozin boyama ile değerlendirildi. İmmünohistokimyasal olarak, konneksin-43, HSP90 ve HIF-1α antikorları ile boyandı.
Bulgular: Grup IV’ün histopatolojisinde bozulmalar olduğu belirlendi, THQ’nun bu bozulmayı iyileştirdiği görüldü. Bunun yanı sıra, diğer gruplara göre; konneksin-43 immunureaktivitesi, Grup IV’de: 108.5±7.4 ile en düşük, HSP90 immunureaktivitesi diğer gruplara göre, Grup IV’de: 103.6±10.4 en yüksek, HIF-1α immunureaktivitesi diğer gruplara göre Grup IV’de: 95.2 ±9.1 en yüksek değerlerdeydi.
Sonuç: Timokinon, MTX toksisitesine karşı interkalar disklerde iletimi sağlayan proteinlerden biri olan konneksin-43, hücre içindeki şaperonlardan biri olan HSP90 ve HIF-1α ekspresyonu üzerine olumlu etki göstermektedir. Aynı zamanda THQ, kalp dokusunda histopatolojik olarak kardiyoprotektif etki göstererek anlamlı bir iyileşme sağlamaktadır.

Supporting Institution

Yozgat Bozok Üniversitesi BAP

Project Number

21/036

References

  • Genestier L, Paillot R, Quemeneur L, Izeradjene K, Revillard JP. Mechanisms of action of methotrexate. Immunopharmacology. 2000;47:247-57.
  • Perez-Verdia A, Angulo F, Hardwicke FL, Nugent KM. Acute cardiac toxicity associated with high-dose intravenous methotrexate therapy: case report and review of the literature. Pharmacother J Hum Pharmacol Drug Ther. 2005;25:1271-6.
  • Al-Taher AY, Morsy MA, Rifaai RA, Zenhom NM, Abdel-Gaber SA. Paeonol attenuates methotrexate-induced cardiac toxicity in rats by inhibiting oxidative stress and suppressing TLR4-induced NF-κB inflammatory pathway. Mediators Inflamm. 2020;2020:8641026.
  • Abdel-Daim MM, Khalifa HA, Abushouk AI, Dkhil MA, Al-Quraishy SA. Diosmin attenuates methotrexate-induced hepatic, renal, and cardiac injury: a biochemical and histopathological study in mice. Oxid Med Cell Longev. 2017;2017:3281670.
  • Johnson RD, Camelliti P. Role of non-myocyte gap junctions and connexin hemichannels in cardiovascular health and disease: novel therapeutic targets? Int J Mol Sci. 2018;19:866.
  • Severs NJ, Bruce AF, Dupont E, Rothery S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res. 2008;80:9-19.
  • Ko YS, Yeh HI, Ko YL, Hsu YC, Chen CF, Wu S et al. Three-dimensional reconstruction of the rabbit atrioventricular conduction axis by combining histological, desmin, and connexin mapping data. Circulation. 2004;109:1172-9.
  • Desplantez T. Cardiac Cx43, Cx40 and Cx45 co-assembling: Involvement of connexins epitopes in formation of hemichannels and Gap junction channels. BMC Cell Biol. 2017;18:1-13.
  • Yu X, Mao M, Liu X, Shen T, Li T, Yu H et al. A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome. J Mol Med. 2020;98:569-83.
  • Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J et al. Hypoxia-induced activation of HIF-1: role of HIF-1α-Hsp90 interaction. FEBS Lett. 1999;460:251-6.
  • Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J Biol Chem. 2002;277:29936-44.
  • Park SY, Jang WJ, Yi EY, Jang JY, Jung Y, Jeong JW et al. Melatonin suppresses tumor angiogenesis by inhibiting HIF-1α stabilization under hypoxia. J Pineal Res. 2010;48:178-84.
  • Schmid T, Zhou J, Brüne B. HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med. 2004;8:423-31.
  • Yeo EJ, Chun YS, Park JW. New anticancer strategies targeting HIF-1. Biochem Pharmacol. 2004;68:1061-9.
  • Alrashedi M. The protective role of thymoquinone against drugs toxicity : a review. 2018;24:1-11.
  • Farooq J, Sultana R, Taj T, Asdaq SMB, Alsalman AJ, Mohaini MA et al. Insights into the protective effects of thymoquinone against toxicities induced by chemotherapeutic agents. Molecules. 2022;27:226.
  • Sonmez MF, Cılenk KT, Karabulut D, Unalmıs S, Deligonul E, Ozturk I et al. Protective effects of propolis on methotrexate-induced testis injury in rat. Biomed Pharmacother. 2016;79: 44-51.
  • Yildirim AB, Karabulut D, Dundar M, Ulusoy HB, Sonmez MF. Expression of Ghrelin and GHSR-1a in Long Term Diabetic Rat’s Kidney. Braz Arch Biol Technol. 2016;59:150312.
  • Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol. 2015;768:71-6.
  • Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P et al. Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res. 2005;67:234-44.
  • Denuc A, Nunez E, Calvo E, Loureiro M, Miro-Casas E, Guarás A et al. New protein–protein interactions of mitochondrial connexin 43 in mouse heart. J Cell Mol Med. 2016;20:794-803.
  • Tu RH, Li QJ, Huang Z, He Y, Meng JJ, Zheng HL et al. Novel functional role of heat shock protein 90 in mitochondrial connexin 43-mediated hypoxic postconditioning. Cell Physiol Biochem. 2017;44:982-97.
  • Roberts RJ, Hallee L, Lam CK. The potential of Hsp90 in targeting pathological pathways in cardiac diseases. J Pers Med. 2021;11:1373.
  • Walter S, Buchner J. Molecular chaperones-cellular machines for protein folding. Angew Chem Int Ed. 2002;41:1098-113.
  • Zhong GQ, Tu RH, Zeng ZY, Li Q jie, He Y, Li S et al. Novel functional role of heat shock protein 90 in protein kinase C-mediated ischemic postconditioning. J Surg Res. 2014;189:198-206.
  • Yu J, Bao E, Yan J, Lei L. Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers. Cell Stress Chaperones. 2008;13:327-35.
  • Hölscher M, Schäfer K, Krull S, Farhat K, Hesse A, Silter M et al. Unfavourable consequences of chronic cardiac HIF-1α stabilization. Cardiovasc Res. 2012;94:77-86.
  • Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW et al. Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res. 2002;62:2478-82.
  • Semenza GL, Agani F, Iyer N, Kotch L, Laughner E, Leung S et al. Regulation of cardiovascular development and physiology by hypoxia-inducible factor 1α. Ann N Y Acad Sci. 1999;874:262-8.
  • Fialho M da LS, Abd Jamil AH, Stannard GA, Heather LC. Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. Biochim Biophys Acta BBA-Mol Basis Dis. 2019;1865:831-43.
  • Hashmi S, Al-Salam S. Hypoxia-inducible factor-1 alpha in the heart: a double agent? Cardiol Rev. 2012;20:268-73.
  • Dogan Z, Durmus S, Ergun DD, Gelisgen R, Uzun H. Ranolazine exhibits anti-inflammatory and antioxidant activities in H9c2 cardiomyocytes. Eur Rev Med Pharmacol Sci. 2023;27:2953-63.

Thymoquinone reduces methotrexate-induced heart damage: a histopathological study in rats

Year 2023, , 844 - 851, 30.09.2023
https://doi.org/10.17826/cumj.1314101

Abstract

Purpose: The study aimed to evaluate the effect of thymoquinone on cardiac tissue in MTX-induced cardiac toxicity in rats with various parameters.
Materials and Methods: Group I (n:8) was administered intraperitoneal saline for 10 days. Intraperitoneal olive oil was applied to Group II (n:8) for 10 days. Group III (n:8) was administered a single dose of 20 mg/kg Methotrexate (MTX) (500 mg/20 ml) intraperitoneally on the 1st day of the experiment. Since Methotrexate was in liquid form, no solvent was used. Group IV (n:8) received 10 mg/kg Thymoquinone (THQ) intraperitoneally for 10 days. Group V (n:8) (MTX: (20 mg/kg single dose intraperitoneally on the 1st day); THQ: 10mg/kg i.p. administered for 10 days. At the end of the experimental period, the rats were sacrificed for analysis of heart tissue. The structure of heart tissue was evaluated by haematoxylin-eosin staining. Immunohistochemically, connexin-43, HSP90, and HIF-1α antibodies were stained. The results were analysed statistically.
Results: According to our results, thymoquinone has a positive effect on the expression of Cx43, one of the proteins providing transmission in the intercalary discs, HSP90, one of the chaperones in the cell, and HIF-1α expression against MTX toxicity and provides a significant improvement by showing a cardioprotective effect histopathologically.
Conclusion: THQ could be considered a crucial cardioprotective phytochemical against MTX cardiotoxicity.

Project Number

21/036

References

  • Genestier L, Paillot R, Quemeneur L, Izeradjene K, Revillard JP. Mechanisms of action of methotrexate. Immunopharmacology. 2000;47:247-57.
  • Perez-Verdia A, Angulo F, Hardwicke FL, Nugent KM. Acute cardiac toxicity associated with high-dose intravenous methotrexate therapy: case report and review of the literature. Pharmacother J Hum Pharmacol Drug Ther. 2005;25:1271-6.
  • Al-Taher AY, Morsy MA, Rifaai RA, Zenhom NM, Abdel-Gaber SA. Paeonol attenuates methotrexate-induced cardiac toxicity in rats by inhibiting oxidative stress and suppressing TLR4-induced NF-κB inflammatory pathway. Mediators Inflamm. 2020;2020:8641026.
  • Abdel-Daim MM, Khalifa HA, Abushouk AI, Dkhil MA, Al-Quraishy SA. Diosmin attenuates methotrexate-induced hepatic, renal, and cardiac injury: a biochemical and histopathological study in mice. Oxid Med Cell Longev. 2017;2017:3281670.
  • Johnson RD, Camelliti P. Role of non-myocyte gap junctions and connexin hemichannels in cardiovascular health and disease: novel therapeutic targets? Int J Mol Sci. 2018;19:866.
  • Severs NJ, Bruce AF, Dupont E, Rothery S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res. 2008;80:9-19.
  • Ko YS, Yeh HI, Ko YL, Hsu YC, Chen CF, Wu S et al. Three-dimensional reconstruction of the rabbit atrioventricular conduction axis by combining histological, desmin, and connexin mapping data. Circulation. 2004;109:1172-9.
  • Desplantez T. Cardiac Cx43, Cx40 and Cx45 co-assembling: Involvement of connexins epitopes in formation of hemichannels and Gap junction channels. BMC Cell Biol. 2017;18:1-13.
  • Yu X, Mao M, Liu X, Shen T, Li T, Yu H et al. A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome. J Mol Med. 2020;98:569-83.
  • Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J et al. Hypoxia-induced activation of HIF-1: role of HIF-1α-Hsp90 interaction. FEBS Lett. 1999;460:251-6.
  • Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J Biol Chem. 2002;277:29936-44.
  • Park SY, Jang WJ, Yi EY, Jang JY, Jung Y, Jeong JW et al. Melatonin suppresses tumor angiogenesis by inhibiting HIF-1α stabilization under hypoxia. J Pineal Res. 2010;48:178-84.
  • Schmid T, Zhou J, Brüne B. HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med. 2004;8:423-31.
  • Yeo EJ, Chun YS, Park JW. New anticancer strategies targeting HIF-1. Biochem Pharmacol. 2004;68:1061-9.
  • Alrashedi M. The protective role of thymoquinone against drugs toxicity : a review. 2018;24:1-11.
  • Farooq J, Sultana R, Taj T, Asdaq SMB, Alsalman AJ, Mohaini MA et al. Insights into the protective effects of thymoquinone against toxicities induced by chemotherapeutic agents. Molecules. 2022;27:226.
  • Sonmez MF, Cılenk KT, Karabulut D, Unalmıs S, Deligonul E, Ozturk I et al. Protective effects of propolis on methotrexate-induced testis injury in rat. Biomed Pharmacother. 2016;79: 44-51.
  • Yildirim AB, Karabulut D, Dundar M, Ulusoy HB, Sonmez MF. Expression of Ghrelin and GHSR-1a in Long Term Diabetic Rat’s Kidney. Braz Arch Biol Technol. 2016;59:150312.
  • Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol. 2015;768:71-6.
  • Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P et al. Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res. 2005;67:234-44.
  • Denuc A, Nunez E, Calvo E, Loureiro M, Miro-Casas E, Guarás A et al. New protein–protein interactions of mitochondrial connexin 43 in mouse heart. J Cell Mol Med. 2016;20:794-803.
  • Tu RH, Li QJ, Huang Z, He Y, Meng JJ, Zheng HL et al. Novel functional role of heat shock protein 90 in mitochondrial connexin 43-mediated hypoxic postconditioning. Cell Physiol Biochem. 2017;44:982-97.
  • Roberts RJ, Hallee L, Lam CK. The potential of Hsp90 in targeting pathological pathways in cardiac diseases. J Pers Med. 2021;11:1373.
  • Walter S, Buchner J. Molecular chaperones-cellular machines for protein folding. Angew Chem Int Ed. 2002;41:1098-113.
  • Zhong GQ, Tu RH, Zeng ZY, Li Q jie, He Y, Li S et al. Novel functional role of heat shock protein 90 in protein kinase C-mediated ischemic postconditioning. J Surg Res. 2014;189:198-206.
  • Yu J, Bao E, Yan J, Lei L. Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers. Cell Stress Chaperones. 2008;13:327-35.
  • Hölscher M, Schäfer K, Krull S, Farhat K, Hesse A, Silter M et al. Unfavourable consequences of chronic cardiac HIF-1α stabilization. Cardiovasc Res. 2012;94:77-86.
  • Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW et al. Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res. 2002;62:2478-82.
  • Semenza GL, Agani F, Iyer N, Kotch L, Laughner E, Leung S et al. Regulation of cardiovascular development and physiology by hypoxia-inducible factor 1α. Ann N Y Acad Sci. 1999;874:262-8.
  • Fialho M da LS, Abd Jamil AH, Stannard GA, Heather LC. Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. Biochim Biophys Acta BBA-Mol Basis Dis. 2019;1865:831-43.
  • Hashmi S, Al-Salam S. Hypoxia-inducible factor-1 alpha in the heart: a double agent? Cardiol Rev. 2012;20:268-73.
  • Dogan Z, Durmus S, Ergun DD, Gelisgen R, Uzun H. Ranolazine exhibits anti-inflammatory and antioxidant activities in H9c2 cardiomyocytes. Eur Rev Med Pharmacol Sci. 2023;27:2953-63.
There are 32 citations in total.

Details

Primary Language English
Subjects Oncologic Surgery, Histology and Embryology
Journal Section Research
Authors

Ayşegül Burçin Yıldırım 0000-0001-7240-9997

Emin Kaymak 0000-0002-3818-2693

Tayfun Ceylan 0000-0002-0917-0378

Ali Akın 0000-0002-1408-8571

Nurhan Kuloğlu 0000-0002-1199-2784

Meryem Sayan 0000-0002-9068-1094

Necla Değer 0000-0001-7239-3331

Esra Önal 0000-0002-2631-6033

Derya Karabulut 0000-0003-2067-6174

Project Number 21/036
Early Pub Date September 25, 2023
Publication Date September 30, 2023
Acceptance Date August 23, 2023
Published in Issue Year 2023

Cite

MLA Yıldırım, Ayşegül Burçin et al. “Thymoquinone Reduces Methotrexate-Induced Heart Damage: A Histopathological Study in Rats”. Cukurova Medical Journal, vol. 48, no. 3, 2023, pp. 844-51, doi:10.17826/cumj.1314101.