Research Article
BibTex RIS Cite

İnsan plasenta kapillerlerinin özgün bir yazılımla 3 boyutlu modellemesi

Year 2023, , 1380 - 1387, 29.12.2023
https://doi.org/10.17826/cumj.1365996

Abstract

Amaç: Histolojide 3 boyutlu yapıların zihinde canlandırılması iki boyutlu kesitlerin incelenmesi ile sağlanmaktadır. Ancak yapı işlev bütünlüğünü anlamak her zaman mümkün olmamaktadır. Bu nedenle çalışmamızda laboratuvarımızda geliştirilen ve farklı bilim dallarındaki çalışmalarda kullanılan program ile plasenta terminal villusundaki kapillerlerin 3 boyutlu (3D) modellerinin elde edilmesi planlanmıştır. Programın Histoloji çalışmaları için uygunluğu da değerlendirilecektir.
Gereç ve Yöntem: Çalışmamızda 33 yaşında, sağlıklı gebenin term plasenta dokusundan örnek toplanmıştır. Plastik gömme işlemini takiben bloklardan yarı ince seri kesitler alınmıştır. Alınan seri kesitler Toluidin blue ile boyanarak ışık mikroskopta incelenmiş ve fotoğraflanmıştır. Villöz kapillerlerin rekonstrüksiyonu için seri kesitlerin ışık mikrograflarına üç-boyutlu modelleme prosedürü uygulanmıştır.
Bulgular: Mevcut program ile kesitlerden elde edilen iki boyutlu ışık mikrograflardan 3 boyutlu görüntüler elde edilmiştir. Birbirine paralel uzanan damarların uyumlu bir şekilde dallanarak terminal villusta kapiller ağ yapısı oluşturdukları gözlenmiştir. Ek olarak, multidisipliner olarak kullanılan bu programın histolojik çalışmalarda uygulanması sırasında ortaya çıkan zorluklar da sunulmuştur.
Sonuç: Fetal kan, dallanan kapiller ağ sayesinde terminal villusun her yerine ulaşmaktadır. Bu özellik, vaskülo-sinsityal membranın yüzey alanını artırarak feto-maternal değişimi kolaylaştırmaktadır. Bu özellik üç boyutlu modeller kullanılarak açıkça görselleştirilmiştir. Üç boyutlu modellemeler organların ve dokuların yapısını anlamamıza yardımcı olurlar. Mevcut program serbest erişimli olduğu için çalışmalara ek maliyet yaratmayacaktır ve araştırmacıların ihtiyaçları doğrultusunda programcı tarafından geliştirilmeye açıktır (erhankiziltan@gmail.com).

Project Number

KA23-330

References

  • Cross JC, Nakano H, Natale DR, Simmons DG, Watson ED. Branching morphogenesis during development of placental villi. Differentiation 2006;74:393-401.
  • Haeussner E, Buehlmeyer A, Schmitz C, von Koch FE, Frank HG. Novel 3D microscopic analysis of human placental villous trees reveals unexpected significance of branching angles. Sci Rep. 2014;26:61-92.
  • Mayo RP, Charnock-Jones DS, Burton GJ, Oyen ML. Three-dimensional modeling of human placental terminal villi. Placenta 2016;43:54-60.
  • Merz G, Schwenk V, Shah RG, Necaise P, Salafia CM. Clarification and 3-D visualization of immunolabeled human placenta villi. Placenta 2017;53:36-9.
  • Salsabili S, Mukherjee A, Ukwatta E, Chan ADC, Bainbridge S, Grynspan D. Automated segmentation of villi in histopathology images of placenta. Comput Biol Med. 2019;113:103420.
  • Lewis RM, Pearson-Farr JE. Multiscale three-dimensional imaging of the placenta. Placenta 2020;102:55-60.
  • Tutar R, Çelebi-Saltik B. Modeling of artificial 3D human placenta. Cells Tissues Organs. 2022;211:527-36.
  • Pichat J, Iglesias JE, Yousry T, Ourselin S, Modat M. A survey of methods for 3D histology reconstruction. Med Image Anal. 2018;46:73-105.
  • Song Y, Treanor D, Bulpitt AJ, Magee DR. 3D reconstruction of multiple stained histology images. J Pathol Inform. 2013;30:4:7.
  • Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med Image Anal. 2016;33:170-5.
  • Jansen I, Lucas M, Savci-Heijink CD, Meijer SL, Liem EIML, de Boer OJ et al. Three-dimensional histopathological reconstruction of bladder tumours. Diagn Pathol. 2019;14:25.
  • Sabdyusheva Litschauer I, Becker K, Saghafi S, Ballke S, Bollwein C, Foroughipour M, et al. 3D histopathology of human tumours by fast clearing and ultramicroscopy. Sci Rep. 2020;10:17619.
  • Shin S, Kim MW, Jin KH, Yi KM, Kohmura Y, Ishikawa T et al. Deep 3D reconstruction of synchrotron X-ray computed tomography for intact lungs. Sci Rep. 2023;13:1738.
  • Maken P, Gupta A. 2D-to-3D: A Review for computational 3D image reconstruction from X-ray images. Arch Comput Methods Eng. 2022;30:1-30.
  • Malandain G, Bardinet E, Nelissen K, Vanduffel W. Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations. NeuroImage. 2004;23:111–27.
  • Kartasalo K, Latonen L, Vihinen J, Visakorpi T, Nykter M, Ruusuvuori P. Comparative analysis of tissue reconstruction algorithms for 3D histology. Bioinformatics. 2018;34:3013-21.
  • Fidan PA, Dagdeviren A. Comparative analysis of trophoblasts and angiogenesis in human placental compartments. Int. J. Morphol. 2022;40:981-9.
  • Geuzaine C, Remacle JF. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Enging. 2009;79:1309-31.
  • Jirkovská M, Kucera T, Kaláb J, Jadrnícek M, Niedobová V, Janácek J et al. The branching pattern of villous capillaries and structural changes of placental terminal villi in type 1 diabetes mellitus. Placenta 2012;33:343-51.
  • Clark AR, Lin M, Tawhai M, Saghian R, James JL. Multiscale modelling of the feto–placental vasculature. Interface Focus 2015;5:20140078.
  • Merz G, Schwenk V, Shah R, Salafia C, Necaise P, Joyce M et al. Three-dimensional rendering and analysis of immunolabeled, clarified human placental villous vascular networks. J Vis Exp. 2018;29:57099.
  • Mirbod P. Analytical model of the feto-placental vascular system: consideration of placental oxygen transport. R. Soc. open sci. 2018;5:180219.
  • Plitman Mayo R, Abbas Y, Charnock-Jones DS, Burton GJ, Marom G. Three-dimensional morphological analysis of placental terminal villi. Interface Focus 2019;9:20190037.
  • Gibson E, Gaed M, Gómez JA, Moussa M, Romagnoli C, Pautler S et al. 3D prostate histology reconstruction: an evaluation of image-based and fiducial-based algorithms. Med Phys. 2013;40:093501.
  • Xu Y, Pickering JG, Nong Z, Gibson E, Arpino J-M, Yin H et al. A method for 3D histopathology reconstruction supporting mouse microvasculature analysis. PLoS One. 2015;10:0126817.
  • Mertzanidou T, Hipwell JH, Reis S, Hawkes DJ, Ehteshami Bejnordi B, Dalmis M et al. 3D volume reconstruction from serial breast specimen radiographs for mapping between histology and 3D whole specimen imaging. Med Phys. 2017;44:935-48.
  • Alkemade A, Pine K, Kirilina E, Keuken MC, Mulder MJ, Balesar R et al. 7 Tesla MRI followed by histological 3D reconstructions in whole-brain specimens. Front. Neuroanat. 2020;14:536838.
  • Kiziltan E, Dagdeviren A. three-dimensional reconstruction of anatomical structures: interactive software providing patient specific solutions. J Med Sci. 2020;40:10-8.

Modeling of human placental capillaries by using a unique 3d reconstruction program

Year 2023, , 1380 - 1387, 29.12.2023
https://doi.org/10.17826/cumj.1365996

Abstract

Purpose: Visualization of the three-dimensional structures is performed by examining two-dimensional sections in histology. It is not always possible to comprehend structure-function integrity. Therefore, it was planned to obtain three-dimensional (3D) models of the capillaries in the placenta terminal villus by using the program developed in the Başkent University’s laboratory and used in studies in different disciplines. The program’s suitability for histology studies will also be assessed.
Materials and Methods: A term placenta tissue sample was obtained from a 33-year-old healthy woman. Following the plastic embedding procedure, semi-thin serial sections were taken from these blocks. The sections were stained using toluidine blue and examined and photographed by using a light microscope. The 3D modeling procedure was conducted on the light micrographs of serial sections in order to reconstruct villous capillaries.
Results: 3D images were obtained from two-dimensional light micrographs by using the same program. It was determined that the vessels running parallel to each other branched harmoniously, forming a capillary network in the terminal villus. Additionally, challenges encountered during the utilization of this program in histological studies are also presented in this study.
Conclusion: Fetal blood reaches every part of the terminal villus through the branching capillary network. This feature would increase the surface area of vasculo-syncytial membrane and facilitate feto-maternal exchange. This can be clearly visualized by using 3D models. Three-dimensional modeling helps to understand the structure of all organs and tissues. Given that the current program is freely accessible, it will not incur additional costs for researchers and is open to further improvement by the programmer (erhankiziltan@gmail.com).

Ethical Statement

This study was approved by the Başkent University Institutional Review Board (Project No: DA23/330) and supported by the Başkent University Research Fund.

Project Number

KA23-330

References

  • Cross JC, Nakano H, Natale DR, Simmons DG, Watson ED. Branching morphogenesis during development of placental villi. Differentiation 2006;74:393-401.
  • Haeussner E, Buehlmeyer A, Schmitz C, von Koch FE, Frank HG. Novel 3D microscopic analysis of human placental villous trees reveals unexpected significance of branching angles. Sci Rep. 2014;26:61-92.
  • Mayo RP, Charnock-Jones DS, Burton GJ, Oyen ML. Three-dimensional modeling of human placental terminal villi. Placenta 2016;43:54-60.
  • Merz G, Schwenk V, Shah RG, Necaise P, Salafia CM. Clarification and 3-D visualization of immunolabeled human placenta villi. Placenta 2017;53:36-9.
  • Salsabili S, Mukherjee A, Ukwatta E, Chan ADC, Bainbridge S, Grynspan D. Automated segmentation of villi in histopathology images of placenta. Comput Biol Med. 2019;113:103420.
  • Lewis RM, Pearson-Farr JE. Multiscale three-dimensional imaging of the placenta. Placenta 2020;102:55-60.
  • Tutar R, Çelebi-Saltik B. Modeling of artificial 3D human placenta. Cells Tissues Organs. 2022;211:527-36.
  • Pichat J, Iglesias JE, Yousry T, Ourselin S, Modat M. A survey of methods for 3D histology reconstruction. Med Image Anal. 2018;46:73-105.
  • Song Y, Treanor D, Bulpitt AJ, Magee DR. 3D reconstruction of multiple stained histology images. J Pathol Inform. 2013;30:4:7.
  • Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med Image Anal. 2016;33:170-5.
  • Jansen I, Lucas M, Savci-Heijink CD, Meijer SL, Liem EIML, de Boer OJ et al. Three-dimensional histopathological reconstruction of bladder tumours. Diagn Pathol. 2019;14:25.
  • Sabdyusheva Litschauer I, Becker K, Saghafi S, Ballke S, Bollwein C, Foroughipour M, et al. 3D histopathology of human tumours by fast clearing and ultramicroscopy. Sci Rep. 2020;10:17619.
  • Shin S, Kim MW, Jin KH, Yi KM, Kohmura Y, Ishikawa T et al. Deep 3D reconstruction of synchrotron X-ray computed tomography for intact lungs. Sci Rep. 2023;13:1738.
  • Maken P, Gupta A. 2D-to-3D: A Review for computational 3D image reconstruction from X-ray images. Arch Comput Methods Eng. 2022;30:1-30.
  • Malandain G, Bardinet E, Nelissen K, Vanduffel W. Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations. NeuroImage. 2004;23:111–27.
  • Kartasalo K, Latonen L, Vihinen J, Visakorpi T, Nykter M, Ruusuvuori P. Comparative analysis of tissue reconstruction algorithms for 3D histology. Bioinformatics. 2018;34:3013-21.
  • Fidan PA, Dagdeviren A. Comparative analysis of trophoblasts and angiogenesis in human placental compartments. Int. J. Morphol. 2022;40:981-9.
  • Geuzaine C, Remacle JF. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Enging. 2009;79:1309-31.
  • Jirkovská M, Kucera T, Kaláb J, Jadrnícek M, Niedobová V, Janácek J et al. The branching pattern of villous capillaries and structural changes of placental terminal villi in type 1 diabetes mellitus. Placenta 2012;33:343-51.
  • Clark AR, Lin M, Tawhai M, Saghian R, James JL. Multiscale modelling of the feto–placental vasculature. Interface Focus 2015;5:20140078.
  • Merz G, Schwenk V, Shah R, Salafia C, Necaise P, Joyce M et al. Three-dimensional rendering and analysis of immunolabeled, clarified human placental villous vascular networks. J Vis Exp. 2018;29:57099.
  • Mirbod P. Analytical model of the feto-placental vascular system: consideration of placental oxygen transport. R. Soc. open sci. 2018;5:180219.
  • Plitman Mayo R, Abbas Y, Charnock-Jones DS, Burton GJ, Marom G. Three-dimensional morphological analysis of placental terminal villi. Interface Focus 2019;9:20190037.
  • Gibson E, Gaed M, Gómez JA, Moussa M, Romagnoli C, Pautler S et al. 3D prostate histology reconstruction: an evaluation of image-based and fiducial-based algorithms. Med Phys. 2013;40:093501.
  • Xu Y, Pickering JG, Nong Z, Gibson E, Arpino J-M, Yin H et al. A method for 3D histopathology reconstruction supporting mouse microvasculature analysis. PLoS One. 2015;10:0126817.
  • Mertzanidou T, Hipwell JH, Reis S, Hawkes DJ, Ehteshami Bejnordi B, Dalmis M et al. 3D volume reconstruction from serial breast specimen radiographs for mapping between histology and 3D whole specimen imaging. Med Phys. 2017;44:935-48.
  • Alkemade A, Pine K, Kirilina E, Keuken MC, Mulder MJ, Balesar R et al. 7 Tesla MRI followed by histological 3D reconstructions in whole-brain specimens. Front. Neuroanat. 2020;14:536838.
  • Kiziltan E, Dagdeviren A. three-dimensional reconstruction of anatomical structures: interactive software providing patient specific solutions. J Med Sci. 2020;40:10-8.
There are 28 citations in total.

Details

Primary Language English
Subjects Histology and Embryology
Journal Section Research
Authors

Pınar Ayran Fidan 0000-0003-3047-0305

Project Number KA23-330
Publication Date December 29, 2023
Acceptance Date December 19, 2023
Published in Issue Year 2023

Cite

MLA Ayran Fidan, Pınar. “Modeling of Human Placental Capillaries by Using a Unique 3d Reconstruction Program”. Cukurova Medical Journal, vol. 48, no. 4, 2023, pp. 1380-7, doi:10.17826/cumj.1365996.