Research Article
BibTex RIS Cite

Silymarin'in WNT/β-katenin yolağı aracılığıyla hepatotoksisite ötesinde terapötik yeniden kullanım potansiyelinin keşfi

Year 2023, , 1299 - 1309, 29.12.2023
https://doi.org/10.17826/cumj.1366590

Abstract

Amaç: Bu çalışmada, silymarinin hepatosellüler karsinom (HCC) için bir ilaç olma potansiyeli in situ olarak değerlendirilmiştir.
Gereç ve Yöntem: Çalışmada SwissADME, silymarinin farmakokinetik ve ilaç benzeri özelliklerini değerlendirmek için kullanılmıştır. Moleküler docking, silymarinin WNT/β-katenin yolağı ile ilişkili olan ve HCC'de bu yolakla ilişkilendirilen moleküler bileşiklerle etkileşimini modellemek için gerçekleştirilmiştir. Hedef proteinler (AFP, PIK3CA, β-katenin, PTEN, AAT, AXIN1, GSTM1, GSK3B, PI3K3CA, GSTT1, CCND1, albumin, p53, MET, CTNNB1 ve APC) SwissTargetPrediction veritabanından elde edilmiştir. Protein-protein etkileşimleri STRING ve Cytoscape veritabanlarından alınmıştır. PASS platformu, potansiyel biyoaktivite özelliklerini tahmin etmek için kullanılmıştır.
Bulgular: Silymarin en iyi bağlanmayı -11,7 Kcal/mol değeriyle APC proteiniyle göstermiştir. Araştırılan proteinler arasında AXIN1 en az bağlanmayı gösterse de, -7,4 Kcal/mol değeri iyi bir bağlanma afinitesi olarak kabul edilebilir.
Sonuç: Bu çalışmada silymarinin WNT/β-katenin yolağının aşırı aktivasyonunu inhibe etme ve hepatoprotektif özelliklerinin ötesinde HCC için potansiyel bir ilaç adayı olma potansiyeli tanımlanmıştır. Bununla birlikte, silymarinin etkinliğini ve güvenliğini doğrulamak için WNT/β-katenin yolağını hedef alan daha fazla preklinik ve klinik araştırmaya ihtiyaç vardır.

References

  • Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41-58.
  • Kulkarni VS, Alagarsamy V, Solomon VR, Jose PA, Murugesan S. Drug repurposing: an effective tool in modern drug discovery. Russ J Bioorg Chem. 2023;49:157-66.
  • Akhtar MN, Saeed R, Saeed F, Asghar A, Ghani S, Ateeq H et al. Silymarin: a review on paving the way towards promising pharmacological agent. Int J Food Prop. 2023;26:2256-72.
  • Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F et al. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int. 2023;23:88.
  • Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in liver diseases: past, present, future. Phytother Res. 2010;24:1423-32.
  • Aldayel MF. Potential antibacterial and antioxidant inhibitory activities of Silybum marianum mediated biosynthesised He-Ne laser. Saudi J Biol Sci. 2023;30:103795.
  • Surai PF. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants. 2015;4:204-247.
  • Koltai T, Fliegel L. Role of silymarin in cancer treatment: facts, hypotheses, and questions. J Evid Based Integr Med. 2022;27:2515690X211068826.
  • Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301-14.
  • Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest. 2022;132:e154515.
  • Long J, Wang A, Bai Y, Lin J, Yang X, Wang D et al. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma. EBioMedicine. 2019;42:363-74.
  • Colnot S. Deciphering the molecular mechanisms underlying hepatocellular carcinoma. World J Gastroenterol. 2011;17:4852-56.
  • Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.
  • Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest. 2022;132:e154515.
  • Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R et al. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017;10:101.
  • Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461-73.
  • Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci. 2010;35:161-8.
  • Fu X, Yang Y, Zhang D. Molecular mechanism of albumin in suppressing invasion and metastasis of hepatocellular carcinoma. Liver Int. 2022;42:696-709.
  • Chanhom N, Udomsinprasert W, Chaikledkaew U, Mahasirimongkol S, Wattanapokayakit S, Jittikoon J. GSTM1 and GSTT1 genetic polymorphisms and their association with antituberculosis drug-induced liver injury. Biomed Rep. 2020;12:153-62.
  • Wang H, Rao B, Lou J, Li J, Liu Z, Li A et al. The function of the HGF/c-Met axis in hepatocellular carcinoma. Front Cell Dev Biol. 2020;8:55

Exploring the drug repurposing potential of silymarin beyond hepatotoxicity treatment through WNT/β-catenin signaling pathway

Year 2023, , 1299 - 1309, 29.12.2023
https://doi.org/10.17826/cumj.1366590

Abstract

Purpose: In this study, the potential of silymarin as a drug for hepatocellular carcinoma (HCC) was evaluated in situ.
Materials and Methods: The SwissADME tool was utilized to assess the pharmacokinetic and drug-like properties of silymarin. Molecular docking was performed to model the interaction of silymarin with molecular compounds known to play a role in the WNT/β-catenin pathway and associated with this pathway in HCC. Target proteins (AFP, PIK3CA, β-catenin, PTEN, AAT, AXIN1, GSTM1, GSK3B, PI3K3CA, GSTT1, CCND1, albumin, p53, MET, CTNNB1, and APC) were obtained from the SwissTargetPrediction database. Protein-protein interactions were obtained from the STRING and Cytoscape databases. The PASS platform was used to predict potential bioactivity properties.
Results: The study data revealed that silymarin exhibited the highest binding affinity to the APC protein, with a value of -11.7 Kcal/mol. Although AXIN1 showed the least binding among the studied proteins, with a value of -7.4 Kcal/mol, this can still be considered a good binding affinity.
Conclusion: This study demonstrated the potential of silymarin to inhibit the overactivation of the WNT/β-catenin pathway and identified silymarin as a potential drug candidate for HCC, beyond its hepatoprotective properties. However, further preclinical and clinical studies targeting the WNT/β-catenin pathway are required to confirm the effectiveness and safety of silymarin.

References

  • Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41-58.
  • Kulkarni VS, Alagarsamy V, Solomon VR, Jose PA, Murugesan S. Drug repurposing: an effective tool in modern drug discovery. Russ J Bioorg Chem. 2023;49:157-66.
  • Akhtar MN, Saeed R, Saeed F, Asghar A, Ghani S, Ateeq H et al. Silymarin: a review on paving the way towards promising pharmacological agent. Int J Food Prop. 2023;26:2256-72.
  • Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F et al. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int. 2023;23:88.
  • Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in liver diseases: past, present, future. Phytother Res. 2010;24:1423-32.
  • Aldayel MF. Potential antibacterial and antioxidant inhibitory activities of Silybum marianum mediated biosynthesised He-Ne laser. Saudi J Biol Sci. 2023;30:103795.
  • Surai PF. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants. 2015;4:204-247.
  • Koltai T, Fliegel L. Role of silymarin in cancer treatment: facts, hypotheses, and questions. J Evid Based Integr Med. 2022;27:2515690X211068826.
  • Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301-14.
  • Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest. 2022;132:e154515.
  • Long J, Wang A, Bai Y, Lin J, Yang X, Wang D et al. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma. EBioMedicine. 2019;42:363-74.
  • Colnot S. Deciphering the molecular mechanisms underlying hepatocellular carcinoma. World J Gastroenterol. 2011;17:4852-56.
  • Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.
  • Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest. 2022;132:e154515.
  • Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R et al. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017;10:101.
  • Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461-73.
  • Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci. 2010;35:161-8.
  • Fu X, Yang Y, Zhang D. Molecular mechanism of albumin in suppressing invasion and metastasis of hepatocellular carcinoma. Liver Int. 2022;42:696-709.
  • Chanhom N, Udomsinprasert W, Chaikledkaew U, Mahasirimongkol S, Wattanapokayakit S, Jittikoon J. GSTM1 and GSTT1 genetic polymorphisms and their association with antituberculosis drug-induced liver injury. Biomed Rep. 2020;12:153-62.
  • Wang H, Rao B, Lou J, Li J, Liu Z, Li A et al. The function of the HGF/c-Met axis in hepatocellular carcinoma. Front Cell Dev Biol. 2020;8:55
There are 20 citations in total.

Details

Primary Language English
Subjects Molecular Targets
Journal Section Research
Authors

Sümeyra Gültekin 0000-0002-5811-8832

Publication Date December 29, 2023
Acceptance Date December 3, 2023
Published in Issue Year 2023

Cite

MLA Gültekin, Sümeyra. “Exploring the Drug Repurposing Potential of Silymarin Beyond Hepatotoxicity Treatment through WNT/β-Catenin Signaling Pathway”. Cukurova Medical Journal, vol. 48, no. 4, 2023, pp. 1299-0, doi:10.17826/cumj.1366590.