Research Article
BibTex RIS Cite

Bone cutting performance and mechanical properties of piezo-surgical tips: a nano-indentation study

Year 2023, , 1282 - 1292, 29.12.2023
https://doi.org/10.17826/cumj.1367977

Abstract

Purpose: The aims of this study were to compare the mechanical properties of piezo-surgical tips such as nano-hardness, elastic modulus, surface roughness, and wear level, and to measure their cutting performance.
Materials and Methods: In this study, 31 piezo-surgical tips were used, three for control and 28 for testing. The testing tips were equally divided into four groups with different numbers of osteotomies: the four-, 8-, 16-, and 32-osteotomy groups. The mean osteotomy duration was recorded during osteotomy. Scanning electron microscopy images of the tips in the test groups were obtained before and after osteotomy, and the wear level of the tips was measured.
Results: A statistically significant increase was observed in the nano-hardness of the piezo-surgical tips depending on the number of osteotomy (for 4-use; 22.47±1.67H and for 32-use; 28.49±3.42H). The elasticity value of the testing tips was in the range of 218.55±15.74E to 241.26±10.46E, and all of the values were significantly higher than those in the control group (174.39±13.53E). As the frequency of use increased, a significant increase in surface roughness was observed (from 16.67±1.50 to 56.12±2.60). A positive correlation was found between the frequency of use and the wear level of the tips, and between the surface roughness and wear level of the tips.
Conclusion: With the increase in the number of osteotomies, significant changes in the mechanical and physical properties of the piezo-surgical tips that affected their bone-cutting performance were observed.

Project Number

20.U.015

References

  • Leclercq P, Zenati C, Amr S, Dohan DM. Ultrasonic bone cut part 1: State-of-the-art technologies and common applications. J Oral Maxillofac Surg. 2008;66:177-82.
  • Carini F, Saggese V, Porcaro G, Baldoni M. Piezolelectric surgery in dentistry: a review. Minerva Stomatol. 2014;63:7-34.
  • Schaller BJ, Gruber R, Merten HA, Kruschat T, Schliephake H, Buchfelder M et al. Piezoelectric bone surgery: a revolutionary technique for minimally invasive surgery in cranial base and spinal surgery? Technical note. Neurosurgery. 2005;57:E410.
  • Robiony M, Polini F, Costa F, Zerman N, Politi M. Ultrasonic bone cutting for surgically assisted rapid maxillary expansion (SARME) under local anaesthesia. Int J Oral Maxillofac Surg. 2007;36:267-9.
  • Schlee M, Steigmann M, Bratu E, Garg AK. Piezosurgery: basics and possibilities. Implant Dent. 2006;15:334-40.
  • Vercellotti T. Technological characteristics and clinical indications of piezoelectric bone surgery. Minerva Stomatol. 2004;53:207-14.
  • Vercellotti T, Pollack AS. A new bone surgery device: sinus grafting and periodontal surgery. Compend Contin Educ Dent. 2006;27:319-25.
  • Pavlíková G, Foltán R, Horká M, Hanzelka T, Borunská H, Sedý J. Piezosurgery in oral and maxillofacial surgery. Int J Oral Maxillofac Surg. 2011;40:451-7.
  • Alamoush RA, Salim NA, Elraggal A, Satterthwaite JD, Silikas N. The effect of water storage on nanoindentation creep of various CAD-CAM composite blocks. BMC Oral Health. 2023;23:543.
  • Lemoine P, Acheson J, McKillop S, van den Beucken JJ, Ward J, Boyd A et al. Nanoindentation and nano-scratching of hydroxyapatite coatings for resorbable magnesium alloy bone implant applications. J Mech Behav Biomed Mater. 2022;133:105306.
  • Srinivasan M, Kalberer N, Kamnoedboon P, Mekki M, Durual S, Özcan M et al. CAD-CAM complete denture resins: an evaluation of biocompatibility, mechanical properties, and surface characteristics. J Dent. 2021;114:103785.
  • Kuzu C, Pelit E, Meral İ. A new design of Rockwell-Brinell-Vickers hardness standard machine at UME. Acta IMEKO. 2020;9:230-4.
  • Qian L, Zhao H. Nanoindentation of soft biological materials. Micromachines (Basel). 2018;9:654.
  • Fischer-Cripps AC, Nicholson D. Nanoindentation. Mechanical engineering series. Appl Mech Rev. 2004;57:B12.
  • Egart M, Janković B, Srčič S. Application of instrumented nanoindentation in preformulation studies of pharmaceutical active ingredients and excipients. Acta Pharm. 2016;66:303-30.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564-83.
  • Draenert FG, Mathys R, Jr., Ehrenfeld M, Draenert Y, Draenert K. Histological examination of drill sites in bovine rib bone after grinding in vitro with eight different devices. Br J Oral Maxillofac Surg. 2007;45:548-52.
  • Scarano A, Lorusso F, Noumbissi S. Infrared thermographic evaluation of temperature modifications induced during implant site preparation with steel vs. zirconia implant drill. J Clin Med. 2020;9:148.
  • Ercoli C, Funkenbusch PD, Lee HJ, Moss ME, Graser GN. The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability. Int J Oral Maxillofac Implants. 2004;19:335-49.
  • Choi YS, Oh JW. Thermal changes during implant site preparation with a digital surgical guide and slot design drill: an ex vivo study using a bovine rib model. J Periodontal Implant Sci. 2022;52:411-21.
  • Ekici Ö, Aslantaş K, Kanık Ö, Keleş A. Evaluation of surface roughness after root resection: An optical profilometer study. Microsc Res Tech. 2021;84:828-36.
  • Zafar MS. Comparing the effects of manual and ultrasonic instrumentation on root surface mechanical properties. Eur J Dent. 2016;10:517-21.
  • Esteves JC, Marcantonio E, Jr., de Souza Faloni AP, Rocha FR, Marcantonio RA, Wilk K et al. Dynamics of bone healing after osteotomy with piezosurgery or conventional drilling - histomorphometrical, immunohistochemical, and molecular analysis. J Transl Med. 2013;11:221.
  • Tepedino M, Romano F, Indolfi M, Aimetti M. Heat production and drill wear following osseous resective durgery: a preliminary in vitro SEM study comparing piezosurgery and conventional drilling. Int J Periodontics Restorative Dent. 2018;38:e33-40.
  • Bauer SE, Romanos GE. Morphological characteristics of osteotomies using different piezosurgical devices. A scanning electron microscopic evaluation. Implant Dent. 2014;23:334-42.
  • Oh HJ, Kim BI, Kim HY, Yeo IS, Wikesjö UM, Koo KT. Implant drill characteristics: thermal and mechanical effects of two-, three-, and four-fluted drills. Int J Oral Maxillofac Implants. 2017;32:483–8.
  • Singh G, Jain V, Gupta D. Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining. Proc Inst Mech Eng H. 2015;229:225-31.
  • Sartori EM, Shinohara EH, Ponzoni D, Padovan LE, Valgas L, Golin AL. Evaluation of deformation, mass loss, and roughness of different metal burs after osteotomy for osseointegrated implants. J Oral Maxillofac Surg. 2012;70:e608-21.
  • Koo KT, Kim MH, Kim HY, Wikesjö UM, Yang JH, Yeo IS. Effects of implant drill wear, irrigation, and drill materials on heat generation in osteotomy sites. J Oral Implantol. 2015;41:e19-23.
  • Marenzi G, Sammartino JC, Quaremba G, Graziano V, El Hassanin A, Qorri ME et al. Clinical influence of micromorphological structure of dental implant bone drills. Biomed Res Int. 2018;2018:8143962.
  • Möhlhenrich SC, Modabber A, Steiner T, Mitchell DA, Hölzle F. Heat generation and drill wear during dental implant site preparation: systematic review. Br J Oral Maxillofac Surg. 2015;53:679-89.
  • Jochum RM, Reichart PA. Influence of multiple use of Timedur-titanium cannon drills: thermal response and scanning electron microscopic findings. Clin Oral Implants Res. 2000;11:139-43.
  • Carvalho AC, Queiroz TP, Okamoto R, Margonar R, Garcia IR, Jr., Magro Filho O. Evaluation of bone heating, immediate bone cell viability, and wear of high-resistance drills after the creation of implant osteotomies in rabbit tibias. Int J Oral Maxillofac Implants. 2011;26:1193-201.
  • Fugito Junior K, Cortes AR, de Carvalho Destro R, Yoshimoto M. Comparative study on the cutting effectiveness and heat generation of rotary instruments versus piezoelectric surgery tips using scanning electron microscopy and thermal analysis. Int J Oral Maxillofac Implants. 2018;33:345-50.
  • Oliveira N, Alaejos-Algarra F, Mareque-Bueno J, Ferrés-Padró E, Hernández-Alfaro F. Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills. Clin Oral Implants Res. 2012;23:963-9.
  • Rashad A, Kaiser A, Prochnow N, Schmitz I, Hoffmann E, Maurer P. Heat production during different ultrasonic and conventional osteotomy preparations for dental implants. Clin Oral Implants Res. 2011;22:1361-5.
  • Alevizakos V, Mitov G, Ahrens AM, von See C. The influence of implant site preparation and sterilization on the performance and wear of implant drills. Int J Oral Maxillofac Implants. 2021;36:546-52.
  • Chacon GE, Bower DL, Larsen PE, McGlumphy EA, Beck FM. Heat production by 3 implant drill systems after repeated drilling and sterilization. J Oral Maxillofac Surg. 2006;64:265-9.

Piezocerrahi uçların kemik kesme performansı ve mekanik özellikleri: bir nano-indentasyon çalışması

Year 2023, , 1282 - 1292, 29.12.2023
https://doi.org/10.17826/cumj.1367977

Abstract

Amaç: Bu çalışmanın amacı piezocerrahi uçların nano-sertlik, elastik modül ve yüzey pürüzlülüğü gibi mekanik özelliklerini ve kemik kesme performanslarını kıyaslamaktır.
Gereç ve Yöntem: Bu çalışmada 3 adet kontrol, 28 adet test amaçlı toplam 31 adet piezo-cerrahi uç kullanıldı. Test grupları 4, 8, 16 ve 32 adet kemik kesisi yapacak şekilde oluşturuldu ve her grupta 7 adet uç yer aldı. Kesi boyunca ortalama süre kaydedildi. Uçlarda meydana gelen aşınmayı belirlemek için test grubunda yer alan piezocerrahi uçların kesi öncesi ve kesi sonrası SEM görüntüleri elde edildi.
Bulgular: Test grubundaki tüm uçların nano-sertliği kemik kesi sayısına göre istatistiksel açıdan önemli düzeyde artış gösterdi (4 kesi grubu için 22.47±1.67H; 32 kesi grubu için, 28.49±3.42H). Kullanıma bağlı olarak uçların elastikiyet değeri 218.55±15.74E ila 241.26±10.46E değeri arasında değişkenlik gösterirken, bu değerler kontrol grubundakinden daha yüksekti (174.39±13.53E). Kullanım sıklığı artıkça uçların yüzey pürüzlülüğünde 16.67±1.50’lik birimden 56.12±2.60’lık birime doğru anlamlı düzeyde artış meydana geldi. Uçların aşınma miktarı ve kullanım sıklığı arasında ve aşınma miktarı ve yüzey pürüzlülüğü arasında pozitif korelasyon gözlendi.
Sonuç: Piezocerrahi uçların kullanım sıklığı artıkça mekanik özelliklerinde nano-düzeyde önemli değişiklikler olmakta ve bu değişiklikler kesi performansını etkilemektedir.

Ethical Statement

This study does not require ethical approval

Supporting Institution

The Scientific Research Projects Agency Coordination of Hatay Mustafa Kemal University

Project Number

20.U.015

Thanks

We thank to the Scientific Research Projects Agency Coordination of Hatay Mustafa Kemal University for its supports.

References

  • Leclercq P, Zenati C, Amr S, Dohan DM. Ultrasonic bone cut part 1: State-of-the-art technologies and common applications. J Oral Maxillofac Surg. 2008;66:177-82.
  • Carini F, Saggese V, Porcaro G, Baldoni M. Piezolelectric surgery in dentistry: a review. Minerva Stomatol. 2014;63:7-34.
  • Schaller BJ, Gruber R, Merten HA, Kruschat T, Schliephake H, Buchfelder M et al. Piezoelectric bone surgery: a revolutionary technique for minimally invasive surgery in cranial base and spinal surgery? Technical note. Neurosurgery. 2005;57:E410.
  • Robiony M, Polini F, Costa F, Zerman N, Politi M. Ultrasonic bone cutting for surgically assisted rapid maxillary expansion (SARME) under local anaesthesia. Int J Oral Maxillofac Surg. 2007;36:267-9.
  • Schlee M, Steigmann M, Bratu E, Garg AK. Piezosurgery: basics and possibilities. Implant Dent. 2006;15:334-40.
  • Vercellotti T. Technological characteristics and clinical indications of piezoelectric bone surgery. Minerva Stomatol. 2004;53:207-14.
  • Vercellotti T, Pollack AS. A new bone surgery device: sinus grafting and periodontal surgery. Compend Contin Educ Dent. 2006;27:319-25.
  • Pavlíková G, Foltán R, Horká M, Hanzelka T, Borunská H, Sedý J. Piezosurgery in oral and maxillofacial surgery. Int J Oral Maxillofac Surg. 2011;40:451-7.
  • Alamoush RA, Salim NA, Elraggal A, Satterthwaite JD, Silikas N. The effect of water storage on nanoindentation creep of various CAD-CAM composite blocks. BMC Oral Health. 2023;23:543.
  • Lemoine P, Acheson J, McKillop S, van den Beucken JJ, Ward J, Boyd A et al. Nanoindentation and nano-scratching of hydroxyapatite coatings for resorbable magnesium alloy bone implant applications. J Mech Behav Biomed Mater. 2022;133:105306.
  • Srinivasan M, Kalberer N, Kamnoedboon P, Mekki M, Durual S, Özcan M et al. CAD-CAM complete denture resins: an evaluation of biocompatibility, mechanical properties, and surface characteristics. J Dent. 2021;114:103785.
  • Kuzu C, Pelit E, Meral İ. A new design of Rockwell-Brinell-Vickers hardness standard machine at UME. Acta IMEKO. 2020;9:230-4.
  • Qian L, Zhao H. Nanoindentation of soft biological materials. Micromachines (Basel). 2018;9:654.
  • Fischer-Cripps AC, Nicholson D. Nanoindentation. Mechanical engineering series. Appl Mech Rev. 2004;57:B12.
  • Egart M, Janković B, Srčič S. Application of instrumented nanoindentation in preformulation studies of pharmaceutical active ingredients and excipients. Acta Pharm. 2016;66:303-30.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564-83.
  • Draenert FG, Mathys R, Jr., Ehrenfeld M, Draenert Y, Draenert K. Histological examination of drill sites in bovine rib bone after grinding in vitro with eight different devices. Br J Oral Maxillofac Surg. 2007;45:548-52.
  • Scarano A, Lorusso F, Noumbissi S. Infrared thermographic evaluation of temperature modifications induced during implant site preparation with steel vs. zirconia implant drill. J Clin Med. 2020;9:148.
  • Ercoli C, Funkenbusch PD, Lee HJ, Moss ME, Graser GN. The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability. Int J Oral Maxillofac Implants. 2004;19:335-49.
  • Choi YS, Oh JW. Thermal changes during implant site preparation with a digital surgical guide and slot design drill: an ex vivo study using a bovine rib model. J Periodontal Implant Sci. 2022;52:411-21.
  • Ekici Ö, Aslantaş K, Kanık Ö, Keleş A. Evaluation of surface roughness after root resection: An optical profilometer study. Microsc Res Tech. 2021;84:828-36.
  • Zafar MS. Comparing the effects of manual and ultrasonic instrumentation on root surface mechanical properties. Eur J Dent. 2016;10:517-21.
  • Esteves JC, Marcantonio E, Jr., de Souza Faloni AP, Rocha FR, Marcantonio RA, Wilk K et al. Dynamics of bone healing after osteotomy with piezosurgery or conventional drilling - histomorphometrical, immunohistochemical, and molecular analysis. J Transl Med. 2013;11:221.
  • Tepedino M, Romano F, Indolfi M, Aimetti M. Heat production and drill wear following osseous resective durgery: a preliminary in vitro SEM study comparing piezosurgery and conventional drilling. Int J Periodontics Restorative Dent. 2018;38:e33-40.
  • Bauer SE, Romanos GE. Morphological characteristics of osteotomies using different piezosurgical devices. A scanning electron microscopic evaluation. Implant Dent. 2014;23:334-42.
  • Oh HJ, Kim BI, Kim HY, Yeo IS, Wikesjö UM, Koo KT. Implant drill characteristics: thermal and mechanical effects of two-, three-, and four-fluted drills. Int J Oral Maxillofac Implants. 2017;32:483–8.
  • Singh G, Jain V, Gupta D. Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining. Proc Inst Mech Eng H. 2015;229:225-31.
  • Sartori EM, Shinohara EH, Ponzoni D, Padovan LE, Valgas L, Golin AL. Evaluation of deformation, mass loss, and roughness of different metal burs after osteotomy for osseointegrated implants. J Oral Maxillofac Surg. 2012;70:e608-21.
  • Koo KT, Kim MH, Kim HY, Wikesjö UM, Yang JH, Yeo IS. Effects of implant drill wear, irrigation, and drill materials on heat generation in osteotomy sites. J Oral Implantol. 2015;41:e19-23.
  • Marenzi G, Sammartino JC, Quaremba G, Graziano V, El Hassanin A, Qorri ME et al. Clinical influence of micromorphological structure of dental implant bone drills. Biomed Res Int. 2018;2018:8143962.
  • Möhlhenrich SC, Modabber A, Steiner T, Mitchell DA, Hölzle F. Heat generation and drill wear during dental implant site preparation: systematic review. Br J Oral Maxillofac Surg. 2015;53:679-89.
  • Jochum RM, Reichart PA. Influence of multiple use of Timedur-titanium cannon drills: thermal response and scanning electron microscopic findings. Clin Oral Implants Res. 2000;11:139-43.
  • Carvalho AC, Queiroz TP, Okamoto R, Margonar R, Garcia IR, Jr., Magro Filho O. Evaluation of bone heating, immediate bone cell viability, and wear of high-resistance drills after the creation of implant osteotomies in rabbit tibias. Int J Oral Maxillofac Implants. 2011;26:1193-201.
  • Fugito Junior K, Cortes AR, de Carvalho Destro R, Yoshimoto M. Comparative study on the cutting effectiveness and heat generation of rotary instruments versus piezoelectric surgery tips using scanning electron microscopy and thermal analysis. Int J Oral Maxillofac Implants. 2018;33:345-50.
  • Oliveira N, Alaejos-Algarra F, Mareque-Bueno J, Ferrés-Padró E, Hernández-Alfaro F. Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills. Clin Oral Implants Res. 2012;23:963-9.
  • Rashad A, Kaiser A, Prochnow N, Schmitz I, Hoffmann E, Maurer P. Heat production during different ultrasonic and conventional osteotomy preparations for dental implants. Clin Oral Implants Res. 2011;22:1361-5.
  • Alevizakos V, Mitov G, Ahrens AM, von See C. The influence of implant site preparation and sterilization on the performance and wear of implant drills. Int J Oral Maxillofac Implants. 2021;36:546-52.
  • Chacon GE, Bower DL, Larsen PE, McGlumphy EA, Beck FM. Heat production by 3 implant drill systems after repeated drilling and sterilization. J Oral Maxillofac Surg. 2006;64:265-9.
There are 38 citations in total.

Details

Primary Language English
Subjects Surgery (Other)
Journal Section Research
Authors

Bünyamin Güzel 0000-0003-3321-848X

Osman Fatih Arpağ 0000-0002-1510-8917

Selma Özarslan 0000-0002-7225-1613

Ahmet Can Haskan 0000-0002-5575-3785

Fariz Salimov 0000-0001-7760-2331

Project Number 20.U.015
Publication Date December 29, 2023
Acceptance Date November 24, 2023
Published in Issue Year 2023

Cite

MLA Güzel, Bünyamin et al. “Bone Cutting Performance and Mechanical Properties of Piezo-Surgical Tips: A Nano-Indentation Study”. Cukurova Medical Journal, vol. 48, no. 4, 2023, pp. 1282-9, doi:10.17826/cumj.1367977.