Research Article
BibTex RIS Cite

Evaluation of the Suitability of Draw Hook Used in Rail Systems for Topology Optimization

Year 2022, , 1 - 12, 31.01.2022
https://doi.org/10.47072/demiryolu.1016373

Abstract

Rail system vehicles for freight and passenger transportation are formed by combining tractive and hauled stocks and using them in sets. When combining more than one vehicle, hook clutch, semi-automatic, and fully automatic coupling are used. Coupling emerges as equipment that needs to be specially examined in terms of being exposed to static and dynamic loads between vehicles and being the most critical equipment for the direct transfer of movement, especially between towed and towed vehicles. In recent years, developments in production methods like additive manufacturing have enabled the production of materials with geometric and structural differences that cannot be produced with traditional methods. Geometrically and structurally, the ease of production allows the most appropriate designs to be made in the material produced according to weight, volume, natural frequency, displacement, and reaction forces. The specified optimal geometric and structural designs can be realized by using structural optimization solutions such as topology optimization. In our study, topology optimization was carried out using the simp method, which was produced from the density-based method, on the drawbar hook, which is directly exposed to loads in the hook coupling. Before the optimization, static analysis of the equipment were made, topology optimization was carried out using sufficient iterations, and the resulting graphic model was converted into a solid model by reverse engineering. As a result of the application, it has been determined that 8.33% weight gain can be achieved in the new solid model, which continues to provide sufficient strength when exposed to a force of 100 kN. With the study, the suitability of the traction hook assembly for topology optimization will be evaluated.

References

  • [1] J. N. Varandas, A. Paixão, E. Fortunato, B. Zuada Coelho, ve P. Hölscher, “Long-term deformation of railway tracks considering train-track interaction and non-linear resilient behaviour of aggregates – a 3D FEM implementation,” Comput. Geotech., c. 126, s. 103712, Eki. 2020, doi: 10.1016/j.compgeo.2020.103712.
  • [2] W. Ferdous, A. Manalo, G. Van Erp, T. Aravinthan, ve K. Ghabraie, “Evaluation of an innovative composite railway sleeper for a narrow-gauge track under static load,” J. Compos. Constr., c. 22, sy 2, s. 04017050, 2018.
  • [3] S. Kaewunruen, T. Lewandrowski, ve K. Chamniprasart, “Dynamic responses of interspersed railway tracks to moving train loads,” Int. J. Struct. Stab. Dyn., c. 18, sy 01, s. 1850011, 2018.
  • [4] M. Yazdani ve P. Azimi, “Assessment of railway plain concrete arch bridges subjected to high-speed trains,” içinde Structures, 2020, c. 27, ss. 174-193.
  • [5] C. Yang ve Q. M. Li, “Structural optimisation for the collapse zone of a railway vehicle,” Int. J. Mech. Sci., c. 165, s. 105201, Oca. 2020, doi: 10.1016/j.ijmecsci.2019.105201.
  • [6] P. K. Srivastava ve S. Shukla, “Reducing Weight of Freight Bogie Bolster Using Topology Optimization,” Rev. GEINTEC-GESTAO INOVACAO E Tecnol., c. 11, sy 3, ss. 324-339, 2021.
  • [7] C.-S. Kim ve J. M. Kim, “A Study on the Durability Improvement of the Connection Passage Assembly for Railway Vehicles,” içinde 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE), 2019, ss. 518-522.
  • [8] K. Tajs-Zielińska ve B. Bochenek, “Multi-Domain and Multi-Material Topology Optimization in Design and Strengthening of Innovative Sustainable Structures,” Sustainability, c. 13, sy 6, Art. sy 6, Oca. 2021, doi: 10.3390/su13063435.
  • [9] H. Völkl, D. Klein, M. Franz, ve S. Wartzack, “An efficient bionic topology optimization method for transversely isotropic materials,” Compos. Struct., c. 204, ss. 359-367, Kas. 2018, doi: 10.1016/j.compstruct.2018.07.079.
  • [10] F. Mezzadri, V. Bouriakov, ve X. Qian, “Topology optimization of self-supporting support structures for additive manufacturing,” Addit. Manuf., c. 21, ss. 666-682, May. 2018, doi: 10.1016/j.addma.2018.04.016.
  • [11] R. Ulewicz, F. Novỳ, P. Novák, ve P. Palček, “The investigation of the fatigue failure of passenger carriage draw-hook,” Eng. Fail. Anal., c. 104, ss. 609-616, 2019.
  • [12] S. M. zadeh Noughabi, K. Dehghani, ve M. Pouranvari, “Failure analysis of automatic coupler SA-3 in railway carriages,” Eng. Fail. Anal., c. 14, sy 5, ss. 903-912, 2007.
  • [13] E. V. Rosa, L. Rios, ve V. Queral, “Progress on the interface between UPP and CPRHS (Cask and Plug Remote Handling System) tractor/gripping tool for ITER,” Fusion Eng. Des., c. 88, sy 9-10, ss. 2168-2172, 2013.
  • [14] O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, ve J. Z. Zhu, The finite element method, c. 3. McGraw-hill London, 1977.
  • [15] J. N. Reddy, Introduction to the finite element method. McGraw-Hill Education, 2019.
  • [16] L. J. Segerlind ve H. Saunders, “Applied finite element analysis,” 1987.
  • [17] D. V. Hutton, Fundamentals of finite element analysis. McGraw-hill, 2004.
  • [18] B. C. L. Vanam, M. Rajyalakshmi, ve R. Inala, “Static analysis of an isotropic rectangular plate using finite element analysis (FEA),” J. Mech. Eng. Res., c. 4, sy 4, ss. 148-162, 2012.
  • [19] S. E. Benzley, E. Perry, K. Merkley, B. Clark, ve G. Sjaardama, “A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis,” içinde Proceedings, 4th international meshing roundtable, 1995, c. 17, ss. 179-191.
  • [20] E. Carrera, M. Cinefra, M. Petrolo, ve E. Zappino, Finite element analysis of structures through unified formulation. John Wiley & Sons, 2014.
  • [21] M. E. Botkin ve H.-P. Wang, “An adaptive mesh refinement of quadrilateral finite element meshes based upon a posteriori error estimation of quantities of interest: linear static response,” Eng. Comput., c. 20, sy 1, ss. 31-37, 2004.
  • [22] T. J. Hughes, The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012.
  • [23] L. Meng vd., “From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap,” Arch. Comput. Methods Eng., c. 27, sy 3, ss. 805-830, Tem. 2020, doi: 10.1007/s11831-019-09331-1.
  • [24] J. Zhu, H. Zhou, C. Wang, L. Zhou, S. Yuan, ve W. Zhang, “A review of topology optimization for additive manufacturing: status and challenges,” Chin. J. Aeronaut., 2020.
  • [25] K. Mhapsekar, M. McConaha, ve S. Anand, “Additive Manufacturing Constraints in Topology Optimization for Improved Manufacturability,” J. Manuf. Sci. Eng., c. 140, sy 5, May. 2018, doi: 10.1115/1.4039198.
  • [26] S. N. Reddy K, I. Ferguson, M. Frecker, T. W. Simpson, ve C. J. Dickman, “Topology optimization software for additive manufacturing: A review of current capabilities and a real-world example,” içinde International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2016, c. 50107, s. V02AT03A029.
  • [27] T. Zhan, “Progress on different topology optimization approaches and optimization for additive manufacturing: a review,” J. Phys. Conf. Ser., c. 1939, sy 1, s. 012101, May. 2021, doi: 10.1088/1742-6596/1939/1/012101.
  • [28] J. Wu, O. Sigmund, ve J. P. Groen, “Topology optimization of multi-scale structures: a review,” Struct. Multidiscip. Optim., c. 63, sy 3, ss. 1455-1480, Mar. 2021, doi: 10.1007/s00158-021-02881-8.
  • [29] J. Gao, M. Xiao, Y. Zhang, ve L. Gao, “A Comprehensive Review of Isogeometric Topology Optimization: Methods, Applications and Prospects,” Chin. J. Mech. Eng., c. 33, sy 1, s. 87, Kas. 2020, doi: 10.1186/s10033-020-00503-w.
  • [30] B. Yunfei, C. Ming, ve L. Yongyao, “Structural topology optimization for a robot upper arm based on SIMP method,” içinde Advances in Reconfigurable Mechanisms and Robots II, Springer, 2016, ss. 725-733.
  • [31] S. Zhang, H. Li, ve Y. Huang, “An improved multi-objective topology optimization model based on SIMP method for continuum structures including self-weight,” Struct. Multidiscip. Optim., c. 63, sy 1, ss. 211-230, Oca. 2021, doi: 10.1007/s00158-020-02685-2.
  • [32] H. S. Gebremedhen, D. E. Woldemicahel, ve F. M. Hashim, “Three-dimensional stress-based topology optimization using SIMP method,” Int. J. Simul. Multidiscip. Des. Optim., c. 10, s. A1, 2019.
  • [33] V. Kandemir, O. Dogan, ve U. Yaman, “Topology optimization of 2.5D parts using the SIMP method with a variable thickness approach,” Procedia Manuf., c. 17, ss. 29-36, Oca. 2018, doi: 10.1016/j.promfg.2018.10.009.
  • [34] W. Zuo ve K. Saitou, “Multi-material topology optimization using ordered SIMP interpolation,” Struct. Multidiscip. Optim., c. 55, sy 2, ss. 477-491, 2017.
  • [35] E. Standards, “UNE EN 15566:2017 Railway applications - Railway rolling stock - Draw gear and screw coupling,” https://www.en-standard.eu. https://www.en-standard.eu/une-en-15566-2017-railway-applications-railway-rolling-stock-draw-gear-and-screw-coupling/ (erişim Eki. 29, 2021).
  • [36] “EN 10083-1:2006 - Steels for quenching and tempering - Part 1: General technical delivery conditions,” iTeh Standards Store. https://standards.iteh.ai/catalog/standards/cen/bf8239bb-e515-40b3-a79f-5ffdb0c3e7a6/en-10083-1-2006 (erişim Eki. 29, 2021).
  • [37] “EN 10083-2:2006 - Steels for quenching and tempering - Part 2: Technical delivery conditions for non alloy steels,” iTeh Standards Store. https://standards.iteh.ai/catalog/standards/cen/753c07e8-18e1-4904-83ae-fec50f911beb/en-10083-2-2006 (erişim Eki. 29, 2021).
  • [38] F. Nový, M. Jambor, M. Petrů, L. Trško, S. Fintová, ve O. Bokůvka, “Investigation of the brittle fracture of the locomotive draw hook,” Engineering Failure Analysis, c. 105, ss. 305-312, Kas. 2019, doi: 10.1016/j.engfailanal.2019.07.019

Raylı Sistemlerde Kullanılan Cer Kancasının Topoloji Optimizasyonuna Uygunluğunun Değerlendirilmesi

Year 2022, , 1 - 12, 31.01.2022
https://doi.org/10.47072/demiryolu.1016373

Abstract

Yük ve yolcu taşımacılığı için raylı sistem taşıtları, çeken ve çekilen araçların birleştirilerek setler halinde kullanılması ile oluşturulmaktadır. Birden fazla vagon ve lokomotifin birleştirilmesi koşum takımları ismi verilen, cer ve fren kuvvetlerini ileten ekipmanlar ile gerçekleştirilir. Sıklıkla birden fazla taşıt birleştirilirken kanca kavramalı, yarı otomatik ve tam otomatik koşum takımları kullanılmaktadır. Koşum takımları taşıtlar arası statik ve dinamik yüklere maruz kalması ve özellikle çeken ve çekilen araçlar arasında hareketin direkt aktarılması için en kritik ekipman olması açısından özel incelenmesi gereken ekipmanlar olarak karşımıza çıkmaktadır. Son yıllarda eklemeli imalat benzeri üretim metotlarında gerçekleşen gelişmeler, geleneksel metotlarla üretilemeyecek geometrik ve yapısal farklılığa sahip malzemelerin üretilmesine olanak sağlamıştır. Geometrik ve yapısal olarak üretim kolaylığı malzeme üretiminde ağırlık, hacim, doğal frekans, yer değiştirme ve reaksiyon kuvvetlerine göre en uygun tasarımların yapılmasına imkân tanımaktadır. Belirtilen en uygun geometrik ve yapısal tasarımlar topoloji optimizasyonu gibi yapısal optimizasyon çözümleri kullanılarak gerçekleştirilebilmektedir. Çalışmamızda kanca kavramalı koşum takımında yüklere direkt maruz kalan cer kancası üzerinde yoğunluk tabanlı yöntemden üretilmiş olan simp yöntemi kullanılarak topoloji optimizasyonu gerçekleştirilmiştir. Ekipmanın optimizasyon öncesi statik analizleri yapılıp, yeterli iterasyon kullanılarak topoloji optimizasyonu gerçekleştirilmiş ve ortaya çıkan grafik model tersine mühendislik yapılarak katı modele çevrilmiştir. Uygulama sonucu 100 kN kuvvete maruz kaldığında yeterli dayanımı sağlamaya devam eden yeni katı modelin %8,33 oranında ağırlık kazanımı sağladığı tespit edilmiştir. Yapılan çalışma ile cer kancası tertibatının topoloji optimizasyonu yapılmasına uygun olma durumu değerlendirilecektir.

References

  • [1] J. N. Varandas, A. Paixão, E. Fortunato, B. Zuada Coelho, ve P. Hölscher, “Long-term deformation of railway tracks considering train-track interaction and non-linear resilient behaviour of aggregates – a 3D FEM implementation,” Comput. Geotech., c. 126, s. 103712, Eki. 2020, doi: 10.1016/j.compgeo.2020.103712.
  • [2] W. Ferdous, A. Manalo, G. Van Erp, T. Aravinthan, ve K. Ghabraie, “Evaluation of an innovative composite railway sleeper for a narrow-gauge track under static load,” J. Compos. Constr., c. 22, sy 2, s. 04017050, 2018.
  • [3] S. Kaewunruen, T. Lewandrowski, ve K. Chamniprasart, “Dynamic responses of interspersed railway tracks to moving train loads,” Int. J. Struct. Stab. Dyn., c. 18, sy 01, s. 1850011, 2018.
  • [4] M. Yazdani ve P. Azimi, “Assessment of railway plain concrete arch bridges subjected to high-speed trains,” içinde Structures, 2020, c. 27, ss. 174-193.
  • [5] C. Yang ve Q. M. Li, “Structural optimisation for the collapse zone of a railway vehicle,” Int. J. Mech. Sci., c. 165, s. 105201, Oca. 2020, doi: 10.1016/j.ijmecsci.2019.105201.
  • [6] P. K. Srivastava ve S. Shukla, “Reducing Weight of Freight Bogie Bolster Using Topology Optimization,” Rev. GEINTEC-GESTAO INOVACAO E Tecnol., c. 11, sy 3, ss. 324-339, 2021.
  • [7] C.-S. Kim ve J. M. Kim, “A Study on the Durability Improvement of the Connection Passage Assembly for Railway Vehicles,” içinde 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE), 2019, ss. 518-522.
  • [8] K. Tajs-Zielińska ve B. Bochenek, “Multi-Domain and Multi-Material Topology Optimization in Design and Strengthening of Innovative Sustainable Structures,” Sustainability, c. 13, sy 6, Art. sy 6, Oca. 2021, doi: 10.3390/su13063435.
  • [9] H. Völkl, D. Klein, M. Franz, ve S. Wartzack, “An efficient bionic topology optimization method for transversely isotropic materials,” Compos. Struct., c. 204, ss. 359-367, Kas. 2018, doi: 10.1016/j.compstruct.2018.07.079.
  • [10] F. Mezzadri, V. Bouriakov, ve X. Qian, “Topology optimization of self-supporting support structures for additive manufacturing,” Addit. Manuf., c. 21, ss. 666-682, May. 2018, doi: 10.1016/j.addma.2018.04.016.
  • [11] R. Ulewicz, F. Novỳ, P. Novák, ve P. Palček, “The investigation of the fatigue failure of passenger carriage draw-hook,” Eng. Fail. Anal., c. 104, ss. 609-616, 2019.
  • [12] S. M. zadeh Noughabi, K. Dehghani, ve M. Pouranvari, “Failure analysis of automatic coupler SA-3 in railway carriages,” Eng. Fail. Anal., c. 14, sy 5, ss. 903-912, 2007.
  • [13] E. V. Rosa, L. Rios, ve V. Queral, “Progress on the interface between UPP and CPRHS (Cask and Plug Remote Handling System) tractor/gripping tool for ITER,” Fusion Eng. Des., c. 88, sy 9-10, ss. 2168-2172, 2013.
  • [14] O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, ve J. Z. Zhu, The finite element method, c. 3. McGraw-hill London, 1977.
  • [15] J. N. Reddy, Introduction to the finite element method. McGraw-Hill Education, 2019.
  • [16] L. J. Segerlind ve H. Saunders, “Applied finite element analysis,” 1987.
  • [17] D. V. Hutton, Fundamentals of finite element analysis. McGraw-hill, 2004.
  • [18] B. C. L. Vanam, M. Rajyalakshmi, ve R. Inala, “Static analysis of an isotropic rectangular plate using finite element analysis (FEA),” J. Mech. Eng. Res., c. 4, sy 4, ss. 148-162, 2012.
  • [19] S. E. Benzley, E. Perry, K. Merkley, B. Clark, ve G. Sjaardama, “A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis,” içinde Proceedings, 4th international meshing roundtable, 1995, c. 17, ss. 179-191.
  • [20] E. Carrera, M. Cinefra, M. Petrolo, ve E. Zappino, Finite element analysis of structures through unified formulation. John Wiley & Sons, 2014.
  • [21] M. E. Botkin ve H.-P. Wang, “An adaptive mesh refinement of quadrilateral finite element meshes based upon a posteriori error estimation of quantities of interest: linear static response,” Eng. Comput., c. 20, sy 1, ss. 31-37, 2004.
  • [22] T. J. Hughes, The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012.
  • [23] L. Meng vd., “From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap,” Arch. Comput. Methods Eng., c. 27, sy 3, ss. 805-830, Tem. 2020, doi: 10.1007/s11831-019-09331-1.
  • [24] J. Zhu, H. Zhou, C. Wang, L. Zhou, S. Yuan, ve W. Zhang, “A review of topology optimization for additive manufacturing: status and challenges,” Chin. J. Aeronaut., 2020.
  • [25] K. Mhapsekar, M. McConaha, ve S. Anand, “Additive Manufacturing Constraints in Topology Optimization for Improved Manufacturability,” J. Manuf. Sci. Eng., c. 140, sy 5, May. 2018, doi: 10.1115/1.4039198.
  • [26] S. N. Reddy K, I. Ferguson, M. Frecker, T. W. Simpson, ve C. J. Dickman, “Topology optimization software for additive manufacturing: A review of current capabilities and a real-world example,” içinde International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2016, c. 50107, s. V02AT03A029.
  • [27] T. Zhan, “Progress on different topology optimization approaches and optimization for additive manufacturing: a review,” J. Phys. Conf. Ser., c. 1939, sy 1, s. 012101, May. 2021, doi: 10.1088/1742-6596/1939/1/012101.
  • [28] J. Wu, O. Sigmund, ve J. P. Groen, “Topology optimization of multi-scale structures: a review,” Struct. Multidiscip. Optim., c. 63, sy 3, ss. 1455-1480, Mar. 2021, doi: 10.1007/s00158-021-02881-8.
  • [29] J. Gao, M. Xiao, Y. Zhang, ve L. Gao, “A Comprehensive Review of Isogeometric Topology Optimization: Methods, Applications and Prospects,” Chin. J. Mech. Eng., c. 33, sy 1, s. 87, Kas. 2020, doi: 10.1186/s10033-020-00503-w.
  • [30] B. Yunfei, C. Ming, ve L. Yongyao, “Structural topology optimization for a robot upper arm based on SIMP method,” içinde Advances in Reconfigurable Mechanisms and Robots II, Springer, 2016, ss. 725-733.
  • [31] S. Zhang, H. Li, ve Y. Huang, “An improved multi-objective topology optimization model based on SIMP method for continuum structures including self-weight,” Struct. Multidiscip. Optim., c. 63, sy 1, ss. 211-230, Oca. 2021, doi: 10.1007/s00158-020-02685-2.
  • [32] H. S. Gebremedhen, D. E. Woldemicahel, ve F. M. Hashim, “Three-dimensional stress-based topology optimization using SIMP method,” Int. J. Simul. Multidiscip. Des. Optim., c. 10, s. A1, 2019.
  • [33] V. Kandemir, O. Dogan, ve U. Yaman, “Topology optimization of 2.5D parts using the SIMP method with a variable thickness approach,” Procedia Manuf., c. 17, ss. 29-36, Oca. 2018, doi: 10.1016/j.promfg.2018.10.009.
  • [34] W. Zuo ve K. Saitou, “Multi-material topology optimization using ordered SIMP interpolation,” Struct. Multidiscip. Optim., c. 55, sy 2, ss. 477-491, 2017.
  • [35] E. Standards, “UNE EN 15566:2017 Railway applications - Railway rolling stock - Draw gear and screw coupling,” https://www.en-standard.eu. https://www.en-standard.eu/une-en-15566-2017-railway-applications-railway-rolling-stock-draw-gear-and-screw-coupling/ (erişim Eki. 29, 2021).
  • [36] “EN 10083-1:2006 - Steels for quenching and tempering - Part 1: General technical delivery conditions,” iTeh Standards Store. https://standards.iteh.ai/catalog/standards/cen/bf8239bb-e515-40b3-a79f-5ffdb0c3e7a6/en-10083-1-2006 (erişim Eki. 29, 2021).
  • [37] “EN 10083-2:2006 - Steels for quenching and tempering - Part 2: Technical delivery conditions for non alloy steels,” iTeh Standards Store. https://standards.iteh.ai/catalog/standards/cen/753c07e8-18e1-4904-83ae-fec50f911beb/en-10083-2-2006 (erişim Eki. 29, 2021).
  • [38] F. Nový, M. Jambor, M. Petrů, L. Trško, S. Fintová, ve O. Bokůvka, “Investigation of the brittle fracture of the locomotive draw hook,” Engineering Failure Analysis, c. 105, ss. 305-312, Kas. 2019, doi: 10.1016/j.engfailanal.2019.07.019
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Article
Authors

Cevat Özarpa 0000-0002-1195-2344

Hüseyin Botsalı 0000-0002-6011-3993

Bahadır Furkan Kınacı 0000-0001-6872-2630

Publication Date January 31, 2022
Submission Date October 29, 2021
Published in Issue Year 2022

Cite

IEEE C. Özarpa, H. Botsalı, and B. F. Kınacı, “Raylı Sistemlerde Kullanılan Cer Kancasının Topoloji Optimizasyonuna Uygunluğunun Değerlendirilmesi”, Demiryolu Mühendisliği, no. 15, pp. 1–12, January 2022, doi: 10.47072/demiryolu.1016373.