Research Article
BibTex RIS Cite

Evaluation of the Effects of the Corrective Railway Maintenance Activities with the Standard Deviation Method

Year 2021, , 29 - 42, 31.01.2021
https://doi.org/10.47072/demiryolu.802565

Abstract

In this study, a specific part of the railway line between Kütahya and Afyonkarahisar cities have been investigated. At the stated track section, the defects of the track geometry parameters; cross level, track gauge, longitudinal level, twist and alignment have been studied and evaluated in accordance with the standard EN 13848-5. Kütahya-Afyonkarahisar railway line complete track renewal was performed in 2013. Having the opportunity to compare the improvement at the track geometry quality at the line, measurements were carried out on the track among 11 years period with the help of track geometry measurement vehicles. Degradations, improvements, the effects of the corrective maintenance and the track renewal activities were determined owing to measurements performed on the track, using the standard deviation method in the EN 13848-5 standard. Maintenance priorities need to be determined due to the limited resources and workforce at railways. Therefore, with this study, it is aimed to use maintenance resources more effectively by inspecting which track geometry parameters are more effective in evaluating the deteriorations and improvements in track geometry and the changes in speed groups of these effects. It has been concluded that the corrective maintenance activities to be carried out on the alignment defects of the track are more effective in increasing the overall quality of the track in low-speed groups and that the higher the initial quality of the track, the longer the overall quality of the track can be maintained.

References

  • [1] TCDD hat bakımı el kitabı, TCDD Yol Dairesi Başkanlığı, Ankara, 2013.
  • [2] Quantitative evaluation of geometric track parameters determining vehicle behaviour, International Union of Railways Office of Research and Experiments (ORE), C152, RP1,1981.
  • [3] A. Hamid, A. Gross, “Track-quality indices and track-degradation models for maintenance-of-way planning,” Transportation Research Record, vol. 802, pp. 2–8, 1981.
  • [4] J. Sadeghi, “Development of railway track geometry indexes based on statistical distribution of geometry data,” Journal of Transportation Engineering, vol. 136, no. 8, pp. 693–700, 2010.
  • [5] A.R.B. Berawi, R. Delgado, R. Calçada, C. Vale, “Evaluating track geometrical quality through different methodologies,” International Journal of Technology, vol. 1, no. 1, pp. 38–47, 2010.
  • [6] P. Xu, Q. Sun, R. Liu, F. Wang, “A short-range prediction model for track quality index,” Proceedings of the Institution of Mechanical Engineers Part FJournal of Rail and Rapid Transit, vol. 225, pp. 277–285, 2011.
  • [7] A. Andrade, P. Teixeira, “Uncertainty in rail-track geometry degradation: Lisbon–Oporto line case study,” Journal of Transportation Engineering, vol. 687, pp. 193–200, 2011.
  • [8] L. Quiroga, E. Schnieder, “Modelling high speed railroad geometry ageing as a discrete-continuous process,” Proceedings of the stochastic modeling techniques and data analysis international conference, SMTDA, Chania Crete Greece, 8–11 June 2010, pp.655–666.
  • [9] M. Audley, J. Andrews, “The effects of tamping on railway track geometry degradation,” Proceedings of the Institution of Mechanical Engineers Part FJournal of Rail and Rapid Transit, vol. 227, no. 4, pp. 376–39, 2013.
  • [10] I.A. Khouy, P. Larsson-Kråik, A. Nissen, U. Juntti, H. Schunnesson, “Optimisation of track geometry inspection interval,” Proceedings of the Institution of Mechanical Engineers Part FJournal of Rail and Rapid Transit, vol. 228, no. 5, pp. 546–556, 2014.
  • [11] A.R. Andrade, P.F. Teixeira, “Unplanned-maintenance needs related to rail track geometry,” Proceedings of the Institution of Civil Engineers-Transport, vol. 167, no. 6, pp. 400-410, 2014.
  • [12] H. Güler, “Optimisation of railway track maintenance and renewal works by genetic algorithms,” Građevinar, vol. 68, no. 12., 2017.
  • [13] Rayhaber, "TCDD demiryollari haritası 2019 yüksek çözünürlük," 2019. [Online]. Available: https://rayhaber.com/2019/07/tcdd-demiryollari-haritasi-2019-yuksek-cozunurluk/ [Accessed November 30, 2020]
  • [14] İ. Kaçer, Kısım şefi el kitabi, TCDD Ankara Eğitim Merkezi Müdürlüğü, Ankara, 2005.
  • [15] V.A. Profillidis, Railway engineering, Ashgate-Publishing Group, Aldershot, Brookfield USA, 2000.
  • [16] İ. Kaçer, İ. Bağbaşı, Üst yapi tekniği ve yolun bakimi, Ankara, 2010.
  • [17] Railway Applications-Track-Track Geometry Quality, Part 5: Geometric quality levels - Plain line, switches and crossings, EN 13848-5:2017, European Committee for Standardization, 2017.
  • [18] A.R. Andrade, “Renewal decisions from a life-cycle cost (LCC) perspective in railway infrastructure: an integrative approach using separate LCC models for rail and ballast components,” M.Sc. Thesis, Department of Civil Engineering, Technical University of Lisbon, Portugal, 2008.
  • [19] A.B. Berawi, “Improving railway track maintenance using power spectral density (PSD),” Ph.D. dissertation, Faculdade De Engenharia Universidade Do Porto, Portugal, 2013.
  • [20] M.S. Muinde, “Railway track geometry inspection optimization,” M.Sc. Thesis, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Sweden, 2018.
  • [21] Railway Applications-Track-Track Geometry Quality, Part 1: Characterization of track geometry, EN 13848-1:2019, European Committee for Standardization, 2019.
  • [22] J. Sadeghi, H. Askarinejad, “Application of neural networks in evaluation of railway track quality condition,” Journal of Mechanical Science and Technology, vol. 26, no. 1, pp. 113-122, 2012.
  • [23] M.V. Taciroğlu, “Demiryolu hat oturmasinin matematiksel modelleri ve hat oturmasina etki eden parametrelerin incelenmesi,” Mühendislik Bilimleri ve Tasarım Dergisi, vol. 4, no .3, pp. 239-246, 2016.
  • [24] Y. Sato, “Optimum track structure considering track deterioration in ballasted track,” in Proceedings Sixth International Heavy Haul Railway Conference, Cape Town, South Africa, 1997.
  • [25] J. Sadeghi, H. Askarinejad, “Development of improved railway track degradation models,” Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance, vol. 6, no. 6, pp. 675-688, 2010.
  • [26] J. Sadeghi, H. Askarinejad, “Investigation on effect of track structural conditions on railway track geometry deviations,” Proceeding of the Institution of Mechanical Engineers, Part F, Journal of Rail and Rapid Transit, vol. 223, no. 4, pp. 415-425, 2009.
  • [27] C. Vale, S.M. Lurdes, “Stochastic model for the geometrical rail track degradation process in the Portuguese railway northern line,” Reliability Engineering and System Safety, vol. 116, pp. 91–98, 2013.

Demiryollarında Düzeltici Bakım Çalışmalarının Etkilerinin Standart Deviasyon Yöntemi ile Değerlendirilmesi

Year 2021, , 29 - 42, 31.01.2021
https://doi.org/10.47072/demiryolu.802565

Abstract

Bu çalışmada, Kütahya-Afyonkarahisar şehirleri arasındaki konvansiyonel taşımacılık yapılan demiryolu hattı üzerinde belirli bir bölüm incelenmiştir. Belirtilen yol kesiminde; dever, ekartman, nivelman, fleş ve burulma yol geometrisi parametrelerine ait hatalar incelenerek ilgili EN 13848-5 standardı çerçevesinde değerlendirilmeler yapılmıştır. Kütahya-Afyonkarahisar demiryolu hattı 2013 yılında poz çalışması yapılarak hat tamamen yenilenmiştir. Hattın kalitesindeki iyileşmeleri karşılaştırılma imkanı bulunan demiryolu hattında yol geometrisi ölçüm makineleri ile yaklaşık 11 yıllık zaman dilimi içerisinde ölçüm çalışmaları yapılmıştır. Bu ölçümler sayesinde yol kesimindeki bozulmalar, iyileşmeler, yapılan düzeltici bakım ve yol yenileme çalışmalarının etkileri EN 13848-5 standardında yer alan standart sapma yöntemi ile belirlenmiştir. Demiryollarında sahip olunan kısıtlı kaynak ve iş gücü nedeniyle bakım önceliklerinin belirlenmesi gerekmektedir. Bu nedenle, bu çalışma ile yol geometrisindeki bozulmalar ve iyileşmelerin değerlendirilmesinde hangi yol geometrisi parametrelerinin daha etkili olduğu ve bu etkilerin hız gruplarındaki değişimleri incelenerek, bakım kaynaklarının daha etkili kullanılması hedeflenmiştir. Fleş kusurları ile ilgili yapılacak düzeltici bakım çalışmalarının yolun genel kalitesinin artırılmasında düşük hız gruplarında daha etkili olduğuna ve yolun ilk kalitesinin yüksek olması ile yolun genel kalitesinin daha uzun süre korunabildiği sonuçlarına varılmıştır.

References

  • [1] TCDD hat bakımı el kitabı, TCDD Yol Dairesi Başkanlığı, Ankara, 2013.
  • [2] Quantitative evaluation of geometric track parameters determining vehicle behaviour, International Union of Railways Office of Research and Experiments (ORE), C152, RP1,1981.
  • [3] A. Hamid, A. Gross, “Track-quality indices and track-degradation models for maintenance-of-way planning,” Transportation Research Record, vol. 802, pp. 2–8, 1981.
  • [4] J. Sadeghi, “Development of railway track geometry indexes based on statistical distribution of geometry data,” Journal of Transportation Engineering, vol. 136, no. 8, pp. 693–700, 2010.
  • [5] A.R.B. Berawi, R. Delgado, R. Calçada, C. Vale, “Evaluating track geometrical quality through different methodologies,” International Journal of Technology, vol. 1, no. 1, pp. 38–47, 2010.
  • [6] P. Xu, Q. Sun, R. Liu, F. Wang, “A short-range prediction model for track quality index,” Proceedings of the Institution of Mechanical Engineers Part FJournal of Rail and Rapid Transit, vol. 225, pp. 277–285, 2011.
  • [7] A. Andrade, P. Teixeira, “Uncertainty in rail-track geometry degradation: Lisbon–Oporto line case study,” Journal of Transportation Engineering, vol. 687, pp. 193–200, 2011.
  • [8] L. Quiroga, E. Schnieder, “Modelling high speed railroad geometry ageing as a discrete-continuous process,” Proceedings of the stochastic modeling techniques and data analysis international conference, SMTDA, Chania Crete Greece, 8–11 June 2010, pp.655–666.
  • [9] M. Audley, J. Andrews, “The effects of tamping on railway track geometry degradation,” Proceedings of the Institution of Mechanical Engineers Part FJournal of Rail and Rapid Transit, vol. 227, no. 4, pp. 376–39, 2013.
  • [10] I.A. Khouy, P. Larsson-Kråik, A. Nissen, U. Juntti, H. Schunnesson, “Optimisation of track geometry inspection interval,” Proceedings of the Institution of Mechanical Engineers Part FJournal of Rail and Rapid Transit, vol. 228, no. 5, pp. 546–556, 2014.
  • [11] A.R. Andrade, P.F. Teixeira, “Unplanned-maintenance needs related to rail track geometry,” Proceedings of the Institution of Civil Engineers-Transport, vol. 167, no. 6, pp. 400-410, 2014.
  • [12] H. Güler, “Optimisation of railway track maintenance and renewal works by genetic algorithms,” Građevinar, vol. 68, no. 12., 2017.
  • [13] Rayhaber, "TCDD demiryollari haritası 2019 yüksek çözünürlük," 2019. [Online]. Available: https://rayhaber.com/2019/07/tcdd-demiryollari-haritasi-2019-yuksek-cozunurluk/ [Accessed November 30, 2020]
  • [14] İ. Kaçer, Kısım şefi el kitabi, TCDD Ankara Eğitim Merkezi Müdürlüğü, Ankara, 2005.
  • [15] V.A. Profillidis, Railway engineering, Ashgate-Publishing Group, Aldershot, Brookfield USA, 2000.
  • [16] İ. Kaçer, İ. Bağbaşı, Üst yapi tekniği ve yolun bakimi, Ankara, 2010.
  • [17] Railway Applications-Track-Track Geometry Quality, Part 5: Geometric quality levels - Plain line, switches and crossings, EN 13848-5:2017, European Committee for Standardization, 2017.
  • [18] A.R. Andrade, “Renewal decisions from a life-cycle cost (LCC) perspective in railway infrastructure: an integrative approach using separate LCC models for rail and ballast components,” M.Sc. Thesis, Department of Civil Engineering, Technical University of Lisbon, Portugal, 2008.
  • [19] A.B. Berawi, “Improving railway track maintenance using power spectral density (PSD),” Ph.D. dissertation, Faculdade De Engenharia Universidade Do Porto, Portugal, 2013.
  • [20] M.S. Muinde, “Railway track geometry inspection optimization,” M.Sc. Thesis, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Sweden, 2018.
  • [21] Railway Applications-Track-Track Geometry Quality, Part 1: Characterization of track geometry, EN 13848-1:2019, European Committee for Standardization, 2019.
  • [22] J. Sadeghi, H. Askarinejad, “Application of neural networks in evaluation of railway track quality condition,” Journal of Mechanical Science and Technology, vol. 26, no. 1, pp. 113-122, 2012.
  • [23] M.V. Taciroğlu, “Demiryolu hat oturmasinin matematiksel modelleri ve hat oturmasina etki eden parametrelerin incelenmesi,” Mühendislik Bilimleri ve Tasarım Dergisi, vol. 4, no .3, pp. 239-246, 2016.
  • [24] Y. Sato, “Optimum track structure considering track deterioration in ballasted track,” in Proceedings Sixth International Heavy Haul Railway Conference, Cape Town, South Africa, 1997.
  • [25] J. Sadeghi, H. Askarinejad, “Development of improved railway track degradation models,” Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance, vol. 6, no. 6, pp. 675-688, 2010.
  • [26] J. Sadeghi, H. Askarinejad, “Investigation on effect of track structural conditions on railway track geometry deviations,” Proceeding of the Institution of Mechanical Engineers, Part F, Journal of Rail and Rapid Transit, vol. 223, no. 4, pp. 415-425, 2009.
  • [27] C. Vale, S.M. Lurdes, “Stochastic model for the geometrical rail track degradation process in the Portuguese railway northern line,” Reliability Engineering and System Safety, vol. 116, pp. 91–98, 2013.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Article
Authors

Polat Yalınız 0000-0003-0373-9727

Sezgin İça 0000-0001-5194-7059

Publication Date January 31, 2021
Submission Date September 30, 2020
Published in Issue Year 2021

Cite

IEEE P. Yalınız and S. İça, “Demiryollarında Düzeltici Bakım Çalışmalarının Etkilerinin Standart Deviasyon Yöntemi ile Değerlendirilmesi”, Demiryolu Mühendisliği, no. 13, pp. 29–42, January 2021, doi: 10.47072/demiryolu.802565.