Research Article
BibTex RIS Cite

Yüksek Hızlı Demiryolu Araç Bojisi ve Yapı Etkileşiminden Kaynaklı Titreşimlerin Azaltılması İçin Aktif Kontrol Algoritması Tasarımı

Year 2021, , 217 - 233, 31.07.2021
https://doi.org/10.47072/demiryolu.937508

Abstract

Bu çalışma 4-DOF yarım araç dinamik fiziksel modeli kullanarak oluşturulmuş demiryolu aracı ve basit mesnetli sınır şartlarına sahip Euler-Bernoulli kirişinde meydana gelen aşırı titreşimleri problem formülasyonunu etkileyen bazı sınırlamalar dikkate alarak incelemektedir. Pasif süspansiyon sistemleri gibi geleneksel süspansiyon sistemleri dışında, bu aşırı titreşimleri azaltmak için, demiryolu boji vagonunun birincil süspansiyon sistemine aktif bir süspansiyon sistemi tasarlanmış ve eklenmiştir. Daha sonra bu aktif süspansiyon sistemlerini kontrol etmek için PID ve SMC tabanlı bir kontrol algoritması düşünülmüştür. Demiryolu boji vagonu ve esnek Euler-Bernoulli köprü kirişinin birleşik hareket denklemi, aktif süspansiyon sistemi ile zaman alanında Hamilton prensibi ile elde edilmiştir. Son olarak, PID ve SMC algoritması ile aktif süspansiyon sisteminin bu aşırı titreşimler üzerindeki etkisini göstermek için bir bilgisayar simülasyonu uygulanmış ve sonuçlar karşılaştırmalı olarak sunulmuştur. Sonuç olarak, maksimum demiryolu aracı boji düşey yer değiştirmesi ve düşey ivme önemli ölçüde azaltılmıştır.

References

  • [1] H. Xia, N. Zhang, and W. Guo, Dynamic Interaction of Train-Bridge Systems in High-Speed Railways. 2018.
  • [2] M. A. Sayeed and M. A. Shahin, “Three-dimensional numerical modelling of ballasted railway track foundations for high-speed trains with special reference to critical speed,” Transp. Geotech., vol. 6, pp. 55–65, 2016, doi: 10.1016/j.trgeo.2016.01.003.
  • [3] M. Wang, X. Z. Li, J. Xiao, Q. Y. Zou, and H. Q. Sha, “An experimental analysis of the aerodynamic characteristics of a high-speed train on a bridge under crosswinds,” J. Wind Eng. Ind. Aerodyn., vol. 177, no. March, pp. 92–100, 2018, doi: 10.1016/j.jweia.2018.03.021.
  • [4] W. Guo, H. Xia, and Y. L. Xu, “Dynamic response of a long span suspension bridge and running safety of a train under wind action,” Front. Archit. Civ. Eng. China, vol. 1, no. 1, pp. 71–79, 2007, doi: 10.1007/s11709-007-0007-1.
  • [5] X. Bian, H. Jiang, C. Chang, J. Hu, and Y. Chen, “Track and ground vibrations generated by high-speed train running on ballastless railway with excitation of vertical track irregularities,” Soil Dyn. Earthq. Eng., vol. 76, pp. 29–43, 2015, doi: 10.1016/j.soildyn.2015.02.009.
  • [6] C. Y. Xia, J. Q. Lei, N. Zhang, H. Xia, and G. De Roeck, “Dynamic analysis of a coupled high-speed train and bridge system subjected to collision load,” J. Sound Vib., vol. 331, no. 10, pp. 2334–2347, 2012, doi: 10.1016/j.jsv.2011.12.024.
  • [7] Z. C. Zhang, J. H. Lin, Y. H. Zhang, Y. Zhao, W. P. Howson, and F. W. Williams, “Non-stationary random vibration analysis for train-bridge systems subjected to horizontal earthquakes,” Eng. Struct., vol. 32, no. 11, pp. 3571–3582, 2010, doi: 10.1016/j.engstruct.2010.08.001.
  • [8] Z. Zhang, Y. Zhang, J. Lin, Y. Zhao, W. P. Howson, and F. W. Williams, “Random vibration of a train traversing a bridge subjected to traveling seismic waves,” Eng. Struct., vol. 33, no. 12, pp. 3546–3558, 2011, doi: 10.1016/j.engstruct.2011.07.018.
  • [9] M. A. Koç, İ. Esen, M. Eroğlu, and Y. Çay, “A new numerical method for analysing the interaction of a bridge structure and travelling cars due to multiple high-speed trains,” Int. J. Heavy Veh. Syst., vol. 28, no. 1, 2021.
  • [10] M. A. Koç, “Finite Element and Numerical Vibration analysis of a Timoshenko and Euler-Bernoulli beams traversed by a moving high-speed train,” J. Brazilian Soc. Mech. Sci. Eng., vol. 7, 2021, doi: 10.1007/s40430-021-02835-7.
  • [11] R. Güçlü, “Active control of seat vibrations of a vehicle model using various suspension alternatives,” Turkish J. Eng. Environ. Sci., vol. 27, no. 6, pp. 361–373, 2003, doi: 10.3906/sag-1204-7.
  • [12] D. Hanafi, “PID controller design for semi-active car suspension based on model from intelligent system identification,” 2010 2nd Int. Conf. Comput. Eng. Appl. ICCEA 2010, vol. 2, no. 3, pp. 60–63, 2010, doi: 10.1109/ICCEA.2010.168.
  • [13] K. D. Rao, Modeling, simulation and control of semi active suspension system for automobiles under MATLAB Simulink using PID controller, vol. 3, no. PART 1. IFAC, 2014.
  • [14] P. Gandhi, S. Adarsh, and K. I. Ramachandran, “Performance Analysis of Half Car Suspension Model with 4 DOF using PID, LQR, FUZZY and ANFIS Controllers,” Procedia Comput. Sci., vol. 115, pp. 2–13, 2017, doi: 10.1016/j.procs.2017.09.070.
  • [15] R. G. Uc, “Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive,” Turk J Elec Eng Comp Sci, vol. 19, no. 5, pp. 807–816, 2011, doi: 10.3906/elk-1001-394.
  • [16] S. Thenozhi and W. Yu, “Stability analysis of active vibration control of building structures using PD / PID control,” Eng. Struct., vol. 81, pp. 208–218, 2014, doi: 10.1016/j.engstruct.2014.09.042.
  • [17] N. G. Adar, M. Eroğlu, and R. Kozan, “PI and Self-Tuning PI Controller Design and Comparison for Speed Control of DC Motor,” Int. Conf. Adv. Technol. Comput. Eng. Sci. 18), 2018.
  • [18] M. Nagarkar, Y. Bhalerao, G. V. Patil, and R. Z. Patil, “Multi-Objective Optimization of Nonlinear Quarter Car Suspension System - PID and LQR Control,” Procedia Manuf., vol. 20, pp. 420–427, 2018, doi: 10.1016/j.promfg.2018.02.061.
  • [19] L. Z. Ben, F. Hasbullah, and F. W. Faris, “A comparative ride performance of passive, semi-active and active suspension systems for off-road vehicles using half car model,” Int. J. Heavy Veh. Syst., vol. 21, no. 1, pp. 26–41, 2014, doi: 10.1504/IJHVS.2014.057827.
  • [20] Q. Zhu, J. J. Ding, and M. L. Yang, “LQG control based lateral active secondary and primary suspensions of high-speed train for ride quality and hunting stability,” IET Control Theory Appl., vol. 12, no. 10, 2018, doi: 10.1049/iet-cta.2017.0529.
  • [21] S. Rajala, T. Roinila, M. Vilkko, O. Ajala, and J. Rauh, “H∞ Control Design of a Novel Active Quarter Car Suspension System.” 2017.
  • [22] Y. M. Sam, J. H. S. Osman, and M. R. A. Ghani, “A class of proportional-integral sliding mode control with application to active suspension system,” Syst. Control Lett., vol. 51, no. 3–4, pp. 217–223, 2004, doi: 10.1016/j.sysconle.2003.08.007.
  • [23] M. A. Koç and İ. Esen, “Modelling and analysis of vehicle-structure-road coupled interaction considering structural flexibility, vehicle parameters and road roughness,” J. Mech. Sci. Technol., vol. 31, no. 5, 2017, doi: 10.1007/s12206-017-0403-y.
  • [24] M. A. Koc, M. A. Kesercipğlu, İ. Esen, and Y. Çay, “Vehicle-Bridge-Interaction Analysis Using Half-Car Model,” 2016.
  • [25] M. A. Koc, “Dynamic Response of an Euler-Bernoulli Beam Coupled with a Tuned Mass Damper under Moving Load Excitation Authors,” Sak. Univ. J. Sci. ISSN, vol. 24, no. 55932, pp. 694–702, 2020.
  • [26] M. A. Koç, “Dynamic Response and Fuzzy Control of Half-Car High-Speed Train and Bridge Interaction,” in 8th International Symposium on Innovative Technologies in Engineering and Science 23-25, 2020, vol. 2020, no. October, pp. 519–529.
  • [27] J. M. Biggs, “Introduction to Structural Dynamics.” McGraw- Hill, New York, 1964.
  • [28] B. Özkan, “MEKATRONİK SİSTEMLERDE UYGULANAN BELLİ BAŞLI KONTROL YÖNTEMLERİ,” TÜBAV Bilim Derg., pp. 302–316, 2009.

Design of the Active Control Algorithm to Reduction of the Vibrations due to Interaction High-Speed Railway Vehicle Bogie and Structure

Year 2021, , 217 - 233, 31.07.2021
https://doi.org/10.47072/demiryolu.937508

Abstract

This study analyzes excessive vibrations that occurred on the railway vehicle bogie with the computer simulation of a 4-DOF half car railway bogie dynamic physical model and Euler-Bernoulli flexible bridge beam with the simply supported boundary conditions has been introduced considering some limitations which affect problem formulation. To reduce these excessive vibrations other than conventional suspension systems such as passive one, an active suspension system has been designed and attached to the primary suspension system of the railway bogie car. Then, to control these active suspension systems, a control algorithm based on PID and SMC is considered. The coupled equation of motion of the railway bogie car and flexible Euler-Bernoulli bridge beam is obtained by Hamilton’s principle in the time domain with the active suspension system. Finally, to demonstrate the effect of the active suspension system with the PID and SMC algorithm upon these excessive vibrations, a computer simulation has been implemented, and the results are presented comparatively. Consequently, the maximum railway vehicle bogie vertical displacement and vertical acceleration have been significantly reduced.

References

  • [1] H. Xia, N. Zhang, and W. Guo, Dynamic Interaction of Train-Bridge Systems in High-Speed Railways. 2018.
  • [2] M. A. Sayeed and M. A. Shahin, “Three-dimensional numerical modelling of ballasted railway track foundations for high-speed trains with special reference to critical speed,” Transp. Geotech., vol. 6, pp. 55–65, 2016, doi: 10.1016/j.trgeo.2016.01.003.
  • [3] M. Wang, X. Z. Li, J. Xiao, Q. Y. Zou, and H. Q. Sha, “An experimental analysis of the aerodynamic characteristics of a high-speed train on a bridge under crosswinds,” J. Wind Eng. Ind. Aerodyn., vol. 177, no. March, pp. 92–100, 2018, doi: 10.1016/j.jweia.2018.03.021.
  • [4] W. Guo, H. Xia, and Y. L. Xu, “Dynamic response of a long span suspension bridge and running safety of a train under wind action,” Front. Archit. Civ. Eng. China, vol. 1, no. 1, pp. 71–79, 2007, doi: 10.1007/s11709-007-0007-1.
  • [5] X. Bian, H. Jiang, C. Chang, J. Hu, and Y. Chen, “Track and ground vibrations generated by high-speed train running on ballastless railway with excitation of vertical track irregularities,” Soil Dyn. Earthq. Eng., vol. 76, pp. 29–43, 2015, doi: 10.1016/j.soildyn.2015.02.009.
  • [6] C. Y. Xia, J. Q. Lei, N. Zhang, H. Xia, and G. De Roeck, “Dynamic analysis of a coupled high-speed train and bridge system subjected to collision load,” J. Sound Vib., vol. 331, no. 10, pp. 2334–2347, 2012, doi: 10.1016/j.jsv.2011.12.024.
  • [7] Z. C. Zhang, J. H. Lin, Y. H. Zhang, Y. Zhao, W. P. Howson, and F. W. Williams, “Non-stationary random vibration analysis for train-bridge systems subjected to horizontal earthquakes,” Eng. Struct., vol. 32, no. 11, pp. 3571–3582, 2010, doi: 10.1016/j.engstruct.2010.08.001.
  • [8] Z. Zhang, Y. Zhang, J. Lin, Y. Zhao, W. P. Howson, and F. W. Williams, “Random vibration of a train traversing a bridge subjected to traveling seismic waves,” Eng. Struct., vol. 33, no. 12, pp. 3546–3558, 2011, doi: 10.1016/j.engstruct.2011.07.018.
  • [9] M. A. Koç, İ. Esen, M. Eroğlu, and Y. Çay, “A new numerical method for analysing the interaction of a bridge structure and travelling cars due to multiple high-speed trains,” Int. J. Heavy Veh. Syst., vol. 28, no. 1, 2021.
  • [10] M. A. Koç, “Finite Element and Numerical Vibration analysis of a Timoshenko and Euler-Bernoulli beams traversed by a moving high-speed train,” J. Brazilian Soc. Mech. Sci. Eng., vol. 7, 2021, doi: 10.1007/s40430-021-02835-7.
  • [11] R. Güçlü, “Active control of seat vibrations of a vehicle model using various suspension alternatives,” Turkish J. Eng. Environ. Sci., vol. 27, no. 6, pp. 361–373, 2003, doi: 10.3906/sag-1204-7.
  • [12] D. Hanafi, “PID controller design for semi-active car suspension based on model from intelligent system identification,” 2010 2nd Int. Conf. Comput. Eng. Appl. ICCEA 2010, vol. 2, no. 3, pp. 60–63, 2010, doi: 10.1109/ICCEA.2010.168.
  • [13] K. D. Rao, Modeling, simulation and control of semi active suspension system for automobiles under MATLAB Simulink using PID controller, vol. 3, no. PART 1. IFAC, 2014.
  • [14] P. Gandhi, S. Adarsh, and K. I. Ramachandran, “Performance Analysis of Half Car Suspension Model with 4 DOF using PID, LQR, FUZZY and ANFIS Controllers,” Procedia Comput. Sci., vol. 115, pp. 2–13, 2017, doi: 10.1016/j.procs.2017.09.070.
  • [15] R. G. Uc, “Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive,” Turk J Elec Eng Comp Sci, vol. 19, no. 5, pp. 807–816, 2011, doi: 10.3906/elk-1001-394.
  • [16] S. Thenozhi and W. Yu, “Stability analysis of active vibration control of building structures using PD / PID control,” Eng. Struct., vol. 81, pp. 208–218, 2014, doi: 10.1016/j.engstruct.2014.09.042.
  • [17] N. G. Adar, M. Eroğlu, and R. Kozan, “PI and Self-Tuning PI Controller Design and Comparison for Speed Control of DC Motor,” Int. Conf. Adv. Technol. Comput. Eng. Sci. 18), 2018.
  • [18] M. Nagarkar, Y. Bhalerao, G. V. Patil, and R. Z. Patil, “Multi-Objective Optimization of Nonlinear Quarter Car Suspension System - PID and LQR Control,” Procedia Manuf., vol. 20, pp. 420–427, 2018, doi: 10.1016/j.promfg.2018.02.061.
  • [19] L. Z. Ben, F. Hasbullah, and F. W. Faris, “A comparative ride performance of passive, semi-active and active suspension systems for off-road vehicles using half car model,” Int. J. Heavy Veh. Syst., vol. 21, no. 1, pp. 26–41, 2014, doi: 10.1504/IJHVS.2014.057827.
  • [20] Q. Zhu, J. J. Ding, and M. L. Yang, “LQG control based lateral active secondary and primary suspensions of high-speed train for ride quality and hunting stability,” IET Control Theory Appl., vol. 12, no. 10, 2018, doi: 10.1049/iet-cta.2017.0529.
  • [21] S. Rajala, T. Roinila, M. Vilkko, O. Ajala, and J. Rauh, “H∞ Control Design of a Novel Active Quarter Car Suspension System.” 2017.
  • [22] Y. M. Sam, J. H. S. Osman, and M. R. A. Ghani, “A class of proportional-integral sliding mode control with application to active suspension system,” Syst. Control Lett., vol. 51, no. 3–4, pp. 217–223, 2004, doi: 10.1016/j.sysconle.2003.08.007.
  • [23] M. A. Koç and İ. Esen, “Modelling and analysis of vehicle-structure-road coupled interaction considering structural flexibility, vehicle parameters and road roughness,” J. Mech. Sci. Technol., vol. 31, no. 5, 2017, doi: 10.1007/s12206-017-0403-y.
  • [24] M. A. Koc, M. A. Kesercipğlu, İ. Esen, and Y. Çay, “Vehicle-Bridge-Interaction Analysis Using Half-Car Model,” 2016.
  • [25] M. A. Koc, “Dynamic Response of an Euler-Bernoulli Beam Coupled with a Tuned Mass Damper under Moving Load Excitation Authors,” Sak. Univ. J. Sci. ISSN, vol. 24, no. 55932, pp. 694–702, 2020.
  • [26] M. A. Koç, “Dynamic Response and Fuzzy Control of Half-Car High-Speed Train and Bridge Interaction,” in 8th International Symposium on Innovative Technologies in Engineering and Science 23-25, 2020, vol. 2020, no. October, pp. 519–529.
  • [27] J. M. Biggs, “Introduction to Structural Dynamics.” McGraw- Hill, New York, 1964.
  • [28] B. Özkan, “MEKATRONİK SİSTEMLERDE UYGULANAN BELLİ BAŞLI KONTROL YÖNTEMLERİ,” TÜBAV Bilim Derg., pp. 302–316, 2009.
There are 28 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Article
Authors

Mehmet Akif Koç 0000-0001-7461-9795

Mustafa Eroğlu 0000-0002-1429-7656

İsmail Esen 0000-0002-7853-1464

Publication Date July 31, 2021
Submission Date May 15, 2021
Published in Issue Year 2021

Cite

IEEE M. A. Koç, M. Eroğlu, and İ. Esen, “Design of the Active Control Algorithm to Reduction of the Vibrations due to Interaction High-Speed Railway Vehicle Bogie and Structure”, Demiryolu Mühendisliği, no. 14, pp. 217–233, July 2021, doi: 10.47072/demiryolu.937508.