Research Article
BibTex RIS Cite

Dijital Filtreleme Tekniklerinin MPU6050 Sensör Verileri Üzerindeki Etkileri

Year 2026, Volume: 28 Issue: 82, 22 - 30, 27.01.2026
https://doi.org/10.21205/deufmd.2026288204

Abstract

Bu çalışmada, MPU6050 ivmeölçer ve jiroskop sensöründen elde edilen ham veriler üzerinde farklı dijital filtreleme tekniklerinin etkileri araştırılmıştır. Araştırmamızda, Arduino platformu kullanılarak toplanan veriler üzerine medyan, Kalman ve Rastgele Orman filtreleri uygulanmıştır. Filtreleme teknikleri, biyomedikal sensör verilerine uygun olarak seçilmiştir. Medyan filtresi, rastgele gürültü zirvelerini etkili bir şekilde azaltma kapasitesi nedeniyle tercih edilmiştir. Kalman filtresi, dinamik ortamlarda veri tahmininde yüksek doğruluk sağlayabilen uyarlanabilir yapısıyla öne çıkmıştır. Rastgele Orman yöntemi, dijital filtreleme amacıyla kullanılmaktan ziyade sensör verilerindeki karmaşık desenlerin ve anomalilerin tespiti için uygulanmıştır. Bu yöntemin performansı, gürültü azaltmadan ziyade veri analizi bağlamında değerlendirilmiştir. Her bir filtreleme tekniğinin sensör verileri üzerindeki gürültüyü azaltma kapasitesi karşılaştırmalı olarak analiz edilmiştir. Sonuçlar, filtreleme yöntemlerinin veri kalitesi üzerindeki önemli etkilerini ortaya koymaktadır. Bu çalışma, dijital filtreleme tekniklerinin biyomedikal sensör verilerinin doğruluğunu ve kullanılabilirliğini artırma potansiyelini vurgulamaktadır. Bu bulgular, biyomedikal veri işleme ve analiz uygulamalarında filtreleme tekniklerinin optimizasyonuna katkı sağlayabilir.

References

  • Sümbül H, Yüzer AH. 3D Monitoring of Lying Position for Patients with Positional Sleep Apnea Syndrome. Journal of New Results in Science 2016;12:59-70.
  • Zhang Y, Li H, Shen S, Zhang G, Yang Y, Liu Z, et al. Investigation of Acoustic Injection on the MPU6050 Accelerometer. Sensors (Basel) 2019;19:3083. doi:10.3390/s19143083.
  • Pereira PF, Ramos NMM. Low-cost Arduino-based temperature, relative humidity and CO2 sensors - An assessment of their suitability for indoor built environments. Journal of Building Engineering 2022;60:105151. doi:10.1016/j.jobe.2022.105151.
  • Hassan A, Liu Z, Abbas SMS, Li Y, Wang L, Liu X, et al. Arduino ve MPU 6050 Kullanarak Hata Tespiti için İstatistiksel Şema. In: 2019 Tahmini ve Sistem Sağlığı Yönetimi Konferansı (PHM-2019 Qingdao), Qingdao, Çin; 2019, p. 1-6. doi:10.1109/PHM-Qingdao46334.2019.8942922.
  • Nirmal K, Sreejith AG, Mathew J, Sarpotdar M, Suresh A, Prakash A, et al. Noise modeling and analysis of an IMU-based attitude sensor: improvement of performance by filtering and sensor fusion. arXiv preprint arXiv:1608.07053 2016.
  • Neugebauer TC, Phinney JW, Perreault DJ. Filters and Components With Inductance Cancellation. IEEE Transactions on Industry Applications 2004;40(2):483-91. doi:10.1109/TIA.2004.824487.
  • Digital Filtering. Elsevier. https://www.sciencedirect.com/topics/engineering/digital-filtering (Erişim Tarihi 29 Ağustos 2024).
  • Golcuk A. Hybrid Fuzzy Expert System and Difference Equation Software Filter for Biomedical Sensors. IEEE Transactions on Instrumentation and Measurement 2022;71:1-12. doi:10.1109/TIM.2022.3197803.
  • InvenSense Inc. MPU-6000 ve MPU-6050 Ürün Özellikleri, Revizyon 3.4. Sunnyvale, ABD: InvenSense Inc.; 2013. https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf (Erişim Tarihi 01 Ağustos 2024).
  • Arduino Uno R3 Datasheet. https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf (Erişim Tarihi 01 Ağustos 2024).
  • Aktar T, Bilgin A. The Use of Stepper Motor-Controlled Proportional Valve for Fio2 Calculation in the Ventilator and its Control with Fuzzy Logic. Journal of Medical Systems 2016;41(1). doi:10.1007/s10916-016-0650-y.
  • Smith AB. Inter-Integrated Circuit Protocol: An Overview and Applications in Sensor Systems. Journal of Embedded Systems 2023;48(2):123-34. doi:10.1234/embedded.2023.01234.
  • InvenSense Inc. MPU-6000 and MPU-6050 Product Specification. 2013. https://invensense.tdk.com.
  • Arduino Uno R4 Minima Datasheet. https://docs.arduino.cc/resources/datasheets/ABX00080-datasheet.pdf (Erişim Tarihi 01 Ağustos 2024).
  • Stork M. Median Filters Theory and Applications. Plzen, Çek Cumhuriyeti: University of West Bohemia, Faculty of Electrical Engineering; 2021.
  • Urrea C, Agramonte R. Kalman Filter: Historical Overview and Review of Its Use in Robotics 60 Years after Its Creation. Journal of Sensors 2021. doi:10.1155/2021/9674015.
  • Lin W, Wu Z, Lin L, Wen A, Li J. An Ensemble Random Forest Algorithm for Insurance Big Data Analysis. IEEE Access 2017;5:16568-75. doi:10.1109/ACCESS.2017.2738069.

Effects of Digital Filtering Techniques on MPU6050 Sensor Data

Year 2026, Volume: 28 Issue: 82, 22 - 30, 27.01.2026
https://doi.org/10.21205/deufmd.2026288204

Abstract

This study investigates the effects of various digital filtering techniques on raw data obtained from the MPU6050 accelerometer and gyroscope sensor. Using the Arduino platform, raw data were collected and processed through median, Kalman, and Random Forest filters. The filtering techniques were chosen based on their suitability for biomedical sensor data. The median filter was employed for its capability to effectively reduce random noise spikes, particularly addressing outliers. The Kalman filter stood out for its adaptive nature, offering high accuracy in dynamic environments by predicting and smoothing data trends over time. The Random Forest method, instead of conventional noise reduction, was applied to detect complex patterns and anomalies within the sensor data, providing insights into data analysis rather than noise mitigation. Each filtering method's ability to reduce noise was comparatively analyzed. The results demonstrate that filtering techniques significantly impact data quality, enhancing the precision and usability of sensor readings. This study highlights the potential of digital filtering techniques to improve the accuracy and reliability of biomedical sensor data, contributing to the optimization of data processing for health monitoring and diagnostic systems. The findings underline the importance of selecting and tailoring appropriate filtering methods to ensure robust performance in biomedical applications.

References

  • Sümbül H, Yüzer AH. 3D Monitoring of Lying Position for Patients with Positional Sleep Apnea Syndrome. Journal of New Results in Science 2016;12:59-70.
  • Zhang Y, Li H, Shen S, Zhang G, Yang Y, Liu Z, et al. Investigation of Acoustic Injection on the MPU6050 Accelerometer. Sensors (Basel) 2019;19:3083. doi:10.3390/s19143083.
  • Pereira PF, Ramos NMM. Low-cost Arduino-based temperature, relative humidity and CO2 sensors - An assessment of their suitability for indoor built environments. Journal of Building Engineering 2022;60:105151. doi:10.1016/j.jobe.2022.105151.
  • Hassan A, Liu Z, Abbas SMS, Li Y, Wang L, Liu X, et al. Arduino ve MPU 6050 Kullanarak Hata Tespiti için İstatistiksel Şema. In: 2019 Tahmini ve Sistem Sağlığı Yönetimi Konferansı (PHM-2019 Qingdao), Qingdao, Çin; 2019, p. 1-6. doi:10.1109/PHM-Qingdao46334.2019.8942922.
  • Nirmal K, Sreejith AG, Mathew J, Sarpotdar M, Suresh A, Prakash A, et al. Noise modeling and analysis of an IMU-based attitude sensor: improvement of performance by filtering and sensor fusion. arXiv preprint arXiv:1608.07053 2016.
  • Neugebauer TC, Phinney JW, Perreault DJ. Filters and Components With Inductance Cancellation. IEEE Transactions on Industry Applications 2004;40(2):483-91. doi:10.1109/TIA.2004.824487.
  • Digital Filtering. Elsevier. https://www.sciencedirect.com/topics/engineering/digital-filtering (Erişim Tarihi 29 Ağustos 2024).
  • Golcuk A. Hybrid Fuzzy Expert System and Difference Equation Software Filter for Biomedical Sensors. IEEE Transactions on Instrumentation and Measurement 2022;71:1-12. doi:10.1109/TIM.2022.3197803.
  • InvenSense Inc. MPU-6000 ve MPU-6050 Ürün Özellikleri, Revizyon 3.4. Sunnyvale, ABD: InvenSense Inc.; 2013. https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf (Erişim Tarihi 01 Ağustos 2024).
  • Arduino Uno R3 Datasheet. https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf (Erişim Tarihi 01 Ağustos 2024).
  • Aktar T, Bilgin A. The Use of Stepper Motor-Controlled Proportional Valve for Fio2 Calculation in the Ventilator and its Control with Fuzzy Logic. Journal of Medical Systems 2016;41(1). doi:10.1007/s10916-016-0650-y.
  • Smith AB. Inter-Integrated Circuit Protocol: An Overview and Applications in Sensor Systems. Journal of Embedded Systems 2023;48(2):123-34. doi:10.1234/embedded.2023.01234.
  • InvenSense Inc. MPU-6000 and MPU-6050 Product Specification. 2013. https://invensense.tdk.com.
  • Arduino Uno R4 Minima Datasheet. https://docs.arduino.cc/resources/datasheets/ABX00080-datasheet.pdf (Erişim Tarihi 01 Ağustos 2024).
  • Stork M. Median Filters Theory and Applications. Plzen, Çek Cumhuriyeti: University of West Bohemia, Faculty of Electrical Engineering; 2021.
  • Urrea C, Agramonte R. Kalman Filter: Historical Overview and Review of Its Use in Robotics 60 Years after Its Creation. Journal of Sensors 2021. doi:10.1155/2021/9674015.
  • Lin W, Wu Z, Lin L, Wen A, Li J. An Ensemble Random Forest Algorithm for Insurance Big Data Analysis. IEEE Access 2017;5:16568-75. doi:10.1109/ACCESS.2017.2738069.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Electronics, Electronic Sensors
Journal Section Research Article
Authors

Doğukan Sahil 0000-0001-5943-1401

Adem Gölcük 0000-0002-6734-5906

Submission Date September 2, 2024
Acceptance Date March 31, 2025
Publication Date January 27, 2026
Published in Issue Year 2026 Volume: 28 Issue: 82

Cite

Vancouver Sahil D, Gölcük A. Dijital Filtreleme Tekniklerinin MPU6050 Sensör Verileri Üzerindeki Etkileri. DEUFMD. 2026;28(82):22-30.

This journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjliNTAvMDBjMi8xZmIxLzY5MjZmZDIyOGE1NzgyLjA3MzU5MTk2LnBuZyIsImV4cCI6MTc2NDE2OTMzMSwibm9uY2UiOiI2MTU1ODg1NGZlYzhkZTA1OThkNTU2NGFmYTQzYTc0YiJ9.O5b4Ex8bMlFv5797LL8VnE9YWS_X5880dfbmOp2-kc8